
Code Generation from MATLAB®

User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Code Generation from MATLAB User’s Guide

© COPYRIGHT 2007–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2007 Online only New for Release 2007a
September 2007 Online only Revised for Release 2007b
March 2008 Online only Revised for Release 2008a
October 2008 Online only Revised for Release 2008b
March 2009 Online only Revised for Release 2009a
September 2009 Online only Revised for Release 2009b
March 2010 Online only Revised for Release 2010a
September 2010 Online only Revised for Release 2010b
April 2011 Online only Revised for Release 2011a

Contents

About Code Generation from MATLAB
Algorithms

1
Direct Translation of MATLAB Algorithms to C/C++
Code . 1-2

Prerequisites for Code Generation from MATLAB 1-3

Preparing MATLAB Code for C/C++ and MEX Code
Generation . 1-4

Expected Differences in Behavior After Compiling Your
MATLAB Code . 1-5
Why Are There Differences? . 1-5
Character Size . 1-5
Order of Evaluation in Expressions 1-5
Termination Behavior . 1-6
Size of Variable-Size N-D Arrays . 1-6
Floating-Point Numerical Results . 1-7
NaN and Infinity Patterns . 1-7
Code Generation Target . 1-7

MATLAB Language Features Supported for Code
Generation . 1-9

MATLAB Language Features Not Supported for Code
Generation . 1-11

Related Products that Support Code Generation from
MATLAB . 1-12

v

Functions Supported for Code Generation

2
About Code Generation for Supported Functions 2-2

Functions Supported for Code Generation —
Alphabetical List . 2-3

Functions Supported for Code Generation —
Categorical List . 2-58
Aerospace Toolbox Functions . 2-59
Arithmetic Operator Functions . 2-59
Bit-Wise Operation Functions . 2-60
Casting Functions . 2-60
Communications System Toolbox Functions 2-61
Complex Number Functions . 2-61
Computer Vision System Toolbox Functions 2-62
Data Type Functions . 2-63
Derivative and Integral Functions . 2-63
Discrete Math Functions . 2-63
Error Handling Functions . 2-64
Exponential Functions . 2-64
Filtering and Convolution Functions 2-65
Fixed-Point Toolbox Functions . 2-65
Histogram Functions . 2-74
Image Processing Toolbox Functions 2-74
Input and Output Functions . 2-75
Interpolation and Computational Geometry 2-75
Linear Algebra . 2-76
Logical Operator Functions . 2-76
MATLAB Compiler Functions . 2-77
Matrix and Array Functions . 2-77
Nonlinear Numerical Methods . 2-81
Polynomial Functions . 2-81
Relational Operator Functions . 2-81
Rounding and Remainder Functions 2-82
Set Functions . 2-82
Signal Processing Functions in MATLAB 2-83
Signal Processing Toolbox Functions 2-83
Special Values . 2-88
Specialized Math . 2-88
Statistical Functions . 2-89

vi Contents

String Functions . 2-89
Structure Functions . 2-90
Trigonometric Functions . 2-90

System Objects Supported for Code Generation

3
About Code Generation for System Objects 3-2

Communications System Toolbox System Objects 3-3

DSP System Toolbox System Objects 3-8

Computer Vision System Toolbox System Objects 3-13

Defining MATLAB Variables for C/C++ Code
Generation

4
Why Define Variables Differently for Code
Generation? . 4-2

Best Practices for Defining Variables for C/C++ Code
Generation . 4-3
Define Variables By Assignment Before Using Them 4-3
Use Caution When Reassigning Variables 4-6
Use Type Cast Operators in Variable Definitions 4-6
Define Matrices Before Assigning Indexed Variables 4-6

When You Can Reassign Variable Properties for C/C++
Code Generation . 4-7

Eliminating Redundant Copies of Variables in
Generated Code . 4-8

vii

When Redundant Copies Occur . 4-8
How to Eliminate Redundant Copies by Defining
Uninitialized Variables . 4-8

Defining Uninitialized Variables . 4-9

Defining and Initializing Persistent Variables 4-10

Reusing the Same Variable with Different
Properties . 4-11
When You Can Reuse the Same Variable with Different
Properties . 4-11

When You Cannot Reuse Variables 4-12
Limitations of Variable Reuse . 4-14

Supported Variable Types . 4-16

Defining Data for Code Generation

5
How Working with Data is Different for Code
Generation . 5-2

Code Generation for Complex Data 5-4
Restrictions When Defining Complex Variables 5-4
Expressions Containing Complex Operands Yield Complex
Results . 5-5

Code Generation for Characters . 5-6

Code Generation for MATLAB Structures

6
How Working with Structures is Different for Code
Generation . 6-2

viii Contents

Structure Operations Allowed for Code Generation . . . 6-3

Defining Scalar Structures for Code Generation 6-4
Restrictions When Using struct . 6-4
Restrictions When Defining Scalar Structures by
Assignment . 6-4

Adding Fields in Consistent Order on Each Control Flow
Path . 6-4

Restriction on Adding New Fields After First Use 6-5

Defining Arrays of Structures for Code Generation . . . 6-7
Ensuring Consistency of Fields . 6-7
Using repmat to Define an Array of Structures with
Consistent Field Properties . 6-7

Defining an Array of Structures Using Concatenation 6-8

Making Structures Persistent . 6-9

Indexing Substructures and Fields 6-10

Assigning Values to Structures and Fields 6-12

Code Generation for Enumerated Data

7
How Working with Enumerated Data is Different for
Code Generation . 7-2
See Also . 7-2

Enumerated Types Supported for Code Generation . . . 7-3
Enumerated Type Based on int32 . 7-3
Enumerated Type Based on Simulink.IntEnumType 7-4

When to Use Enumerated Data for Code Generation . . 7-6

Workflows for Using Enumerated Data for Code
Generation . 7-7

ix

Workflow for Generating Code for Enumerated Data from
MATLAB Algorithms . 7-7

Workflow for Generating Code for Enumerated Data from
MATLAB Function Blocks . 7-7

How to Define Enumerated Data for Code
Generation . 7-9
Naming Enumerated Types for Code Generation 7-10

How to Instantiate Enumerated Types for Code
Generation . 7-11

How to Generate Code for Enumerated Data 7-12
See Also . 7-12

Simple Example: Defining and Using Enumerated
Types for Code Generation . 7-13
About the Example . 7-13
Class Definition: sysMode . 7-13
Class Definition: LEDcolor . 7-14
Function: displayState . 7-14

Operations on Enumerated Data Allowed for Code
Generation . 7-15
Assignment Operator, = . 7-15
Relational Operators, < > <= >= == ~= 7-15
Cast Operation . 7-16
Indexing Operation . 7-16
Control Flow Statements: if, switch, while 7-17

Using Enumerated Data in Control Flow Statements . . 7-18
Using the if Statement on Enumerated Data Types 7-18
Using the switch Statement on Enumerated Data
Types . 7-19

Using the while Statement on Enumerated Data Types . . 7-22

Restrictions on Use of Enumerated Data in
for-Loops . 7-24

x Contents

Toolbox Functions That Support Enumerated Types for
Code Generation . 7-25

Code Generation for Variable-Size Data

8
What Is Variable-Size Data? . 8-2

How Working with Variable-Size Data is Different for
Code Generation . 8-3
See Also . 8-3

Bounded Versus Unbounded Variable-Size Data 8-4

When to Use Dynamic Allocation for Variable-Size
Data . 8-5
See Also . 8-5

How to Generate Code for MATLAB Functions with
Variable-Size Data . 8-6

Tutorial: Generating MEX Code for a MATLAB
Function That Expands a Vector in a Loop 8-9
About the MATLAB Function emldemo_uniquetol 8-9
Step 1: Add Compilation Directive for Code Generation . . 8-10
Step 2: Address Issues Detected by the Code Analyzer . . . 8-10
Step 3: Generate MEX Code . 8-10
Step 4: Fix the Size Mismatch Error 8-12
Step 5: Fix the Upper Bounds Error 8-14
Step 6: Generate C/C++ Code . 8-16

Enabling and Disabling Support for Variable-Size
Data . 8-18
Enabled by Default . 8-18
Controlling Variable-Size Support for Different Code
Generation Targets . 8-18

xi

Enabling and Disabling Dynamic Memory Allocation
for Variable-Size Data . 8-21

Variable-Size Data in Code Generation Reports 8-24
What Reports Tell You About Size . 8-24
How Size Appears in Code Generation Reports 8-25
How to Generate a Code Generation Report 8-25

Defining Variable-Size Data for Code Generation 8-26
When to Define Variable-Size Data Explicitly 8-26
Using a Matrix Constructor with Nonconstant
Dimensions . 8-27

Inferring Variable Size from Multiple Assignments 8-27
Defining Variable-Size Data Explicitly Using
coder.varsize . 8-29

Specifying Upper Bounds for Variable-Size Data 8-33
When to Specify Upper Bounds for Variable-Size Data . . . 8-33
Specifying Upper Bounds on the Command Line for
Variable-Size Inputs . 8-33

Specifying Unknown Upper Bounds for Variable-Size
Inputs . 8-33

Specifying Upper Bounds for Local Variable-Size Data . . . 8-34

C Code Interface for Unbounded Arrays and Structure
Fields . 8-36
emxArray: Representation of Data with Unknown Upper
Bounds . 8-36

Utility Functions for Creating emxArray Data
Structures . 8-37

Troubleshooting Issues with Variable-Size Data 8-39
Diagnosing and Fixing Size Mismatch Errors 8-39
Diagnosing and Fixing Errors in Detecting Upper
Bounds . 8-41

Limitations with Variable-Size Support for Code
Generation . 8-43
Limitation on Scalar Expansion . 8-43
Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays . 8-44

xii Contents

Limitation on Vector-Vector Indexing 8-45
Limitations on Matrix Indexing Operations for Code
Generation . 8-46

Dynamic Memory Allocation Not Supported for MATLAB
Function Blocks . 8-47

Limitation on Mixing Stack and Heap Allocation 8-47

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation 8-48
Common Restrictions . 8-48
Toolbox Functions with Variable Sizing Restrictions 8-49

Code Generation for Function Handles

9
How Working with Function Handles is Different for
Code Generation . 9-2

Example: Defining and Passing Function Handles for
Code Generation . 9-3

Limitations with Function Handles for Code
Generation . 9-6

Defining Functions for Code Generation

10
Specifying Variable Numbers of Arguments 10-2

Supported Index Expressions . 10-3

Using varargin and varargout in for-Loops 10-4
When to Force Loop Unrolling . 10-4
Example: Using Variable Numbers of Arguments in a
for-Loop . 10-5

xiii

Implementing Wrapper Functions with varargin and
varargout . 10-7
Example: Passing Variable Numbers of Arguments from
One Function to Another . 10-7

Passing Property/Value Pairs with varargin 10-8

Rules for Using Variable Length Argument Lists for
Code Generation . 10-10

Calling Functions for Code Generation

11
How MATLAB Resolves Function Calls in Generated
Code . 11-2
Key Points About Resolving Function Calls 11-4
Compile Path Search Order . 11-4
When to Use the Code Generation Path 11-5

How MATLAB Resolves File Types on the Path for Code
Generation . 11-6

Adding the Compilation Directive %#codegen 11-8

Calling Subfunctions . 11-9

Calling Supported Toolbox Functions 11-10

Calling MATLAB Functions . 11-11
Declaring MATLAB Functions as Extrinsic Functions . . . 11-11
Calling MATLAB Functions Using feval 11-15
How MATLAB Resolves Extrinsic Functions During
Simulation . 11-15

Working with mxArrays . 11-16
Restrictions on Extrinsic Functions for Code Generation . . 11-17
Limit on Function Arguments . 11-18

xiv Contents

Generating Efficient and Reusable Code

12
Generating Efficient Code . 12-2
Unrolling for-Loops . 12-2
Inlining Functions . 12-2
Eliminating Redundant Copies of Function Inputs 12-2

Generating Reusable Code . 12-4

Examples

A
Data Management . A-2

Code Generation for Structures . A-2

Code Generation for Enumerated Data A-2

Code Generation for Variable-Size Data A-2

Code Generation for Function Handles A-3

Using Variable-Length Argument Lists A-3

Optimizing Generated Code . A-3

Index

xv

xvi Contents

1

About Code Generation
from MATLAB Algorithms

• “Direct Translation of MATLAB Algorithms to C/C++ Code” on page 1-2

• “Prerequisites for Code Generation from MATLAB” on page 1-3

• “Preparing MATLAB Code for C/C++ and MEX Code Generation” on page
1-4

• “Expected Differences in Behavior After Compiling Your MATLAB Code”
on page 1-5

• “MATLAB Language Features Supported for Code Generation” on page 1-9

• “MATLAB Language Features Not Supported for Code Generation” on
page 1-11

• “Related Products that Support Code Generation from MATLAB” on page
1-12

1 About Code Generation from MATLAB Algorithms

Direct Translation of MATLAB Algorithms to C/C++ Code
You can automatically generate MEX functions and standalone C/C++ code
from MATLAB® algorithms. With this capability, you can design, implement,
and test software in the MATLAB environment, then automatically translate
the algorithms to readable, efficient, and compact C/C++ code for deployment
to desktop and embedded systems.

The generated code contains optimizations tailored to meet the requirements
of desktop and embedded applications for speed, memory use, and data type
management.

To verify the generated code in the MATLAB environment, you can generate
MEX functions to compare with your original algorithm to determine whether
they are functionally equivalent.

In certain applications, you can also generate MEX functions to accelerate
MATLAB algorithms.

1-2

Prerequisites for Code Generation from MATLAB®

Prerequisites for Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install
the following software:

• MATLAB® Coder™ product

• C/C++ compiler

For more information, see:

• “Testing MEX Functions in MATLAB” in the MATLAB Coder
documentation.

• “Generating C/C++ Code from MATLAB Code” in the MATLAB Coder
documentation.

• “Accelerating MATLAB Algorithms” in the MATLAB Coder documentation.

1-3

1 About Code Generation from MATLAB Algorithms

Preparing MATLAB Code for C/C++ and MEX Code
Generation

By default, the MATLAB language uses dynamic typing. Properties of
dynamically typed variables can change at runtime, allowing a single variable
to hold a value of any class, size, or complexity. However, to generate efficient
code for statically typed languages such as C and C++, the properties of all
MATLAB variables must be determined at compile time. Therefore, to prepare
MATLAB code for C, C++, and MEX code generation, you must specify the
class, size, and complexity of inputs to the primary function (also known as the
top-level or entry-point function). By determining these properties at compile
time, the code generation process translates your MATLAB algorithms into
code that is efficient and tailored to your specific application, rather than
producing generic code that handles every possible set of MATLAB inputs.

1-4

Expected Differences in Behavior After Compiling Your MATLAB® Code

Expected Differences in Behavior After Compiling Your
MATLAB Code

In this section...

“Why Are There Differences?” on page 1-5

“Character Size” on page 1-5

“Order of Evaluation in Expressions” on page 1-5

“Termination Behavior” on page 1-6

“Size of Variable-Size N-D Arrays” on page 1-6

“Floating-Point Numerical Results” on page 1-7

“NaN and Infinity Patterns” on page 1-7

“ Code Generation Target” on page 1-7

Why Are There Differences?
To convert MATLAB code to C/C++ code that works efficiently, the code
generation process introduces optimizations that intentionally cause the
generated code to behave differently — and sometimes produce different
results — from the original source code. This section describes these
differences.

Character Size
MATLAB supports 16-bit characters, but the generated code represents
characters in 8 bits, the standard size for most embedded languages like C.
See “Code Generation for Characters” on page 5-6.

Order of Evaluation in Expressions
Generated code does not enforce order of evaluation in expressions. For most
expressions, order of evaluation is not significant. However, for expressions
with side effects, the generated code may produce the side effects in different
order from the original MATLAB code. Expressions that produce side effects
include those that:

1-5

1 About Code Generation from MATLAB Algorithms

• Modify persistent or global variables

• Display data to the screen

• Write data to files

In addition, the generated code does not guarantee order of evaluation of
logical operators that do not short circuit.

For more predictable results, it is good coding practice to split expressions
that depend on the order of evaluation into multiple statements. For example,
rewrite:

A = f1() + f2();

as

A = f1();
A = A + f2();

to guarantee that the generated code calls f1 before f2.

Termination Behavior
Generated code does not match the termination behavior of MATLAB source
code. For example, optimizations remove infinite loops from generated code if
they have no side effects. As a result, the generated code may terminate even
though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different
result in generated code than in MATLAB source code. The size function
sometimes returns trailing ones (singleton dimensions) in generated code, but
always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code,
but always returns [4 2] in MATLAB. See “Incompatibility with MATLAB in
Determining Size of Variable-Size N-D Arrays” on page 8-44.

1-6

Expected Differences in Behavior After Compiling Your MATLAB® Code

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical
results as MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended
precision floating-point registers. Computation results might not match
MATLAB calculations because of different compiler optimization settings or
different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain
advanced library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement
svd to accommodate a smaller footprint. Results might also vary according
to matrix properties. For example, MATLAB might detect symmetric or
Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions. Generated C/C++ code uses
reference implementations of BLAS functions, which may produce different
results from platform-specific BLAS implementations in MATLAB.

NaN and Infinity Patterns
The generated code might not produce exactly the same pattern of NaN and inf
values as MATLAB code when these values are mathematically meaningless.
For example, if MATLAB output contains a NaN, output from the generated
code should also contain a NaN, but not necessarily in the same place.

Code Generation Target
The coder.target function returns different values in MATLAB than in the
generated code. The intent is to help you determine whether your function

1-7

1 About Code Generation from MATLAB Algorithms

is executing in MATLAB or has been compiled for a simulation or code
generation target. See coder.target.

1-8

MATLAB® Language Features Supported for Code Generation

MATLAB Language Features Supported for Code
Generation

MATLAB supports the following language features in generated code:

• N-dimensional arrays

• Matrix operations

• Variable-sized data (see “How Working with Variable-Size Data is Different
for Code Generation” on page 8-3)

• Subscripting (see “Limitations on Matrix Indexing Operations for Code
Generation” on page 8-46)

• Complex numbers (see “Code Generation for Complex Data” on page 5-4)

• Numeric classes (see “Supported Variable Types” on page 4-16)

• Double-precision, single-precision, and integer math

• Fixed-point arithmetic (see “Code Acceleration and Code Generation
from MATLAB for Fixed-Point Algorithms” in the Fixed-Point Toolbox™
documentation)

• Program control statements if, switch, for, and while

• All arithmetic, relational, and logical operators

• Subfunctions (see Chapter 11, “Calling Functions for Code Generation”)

• Persistent variables (see “Defining and Initializing Persistent Variables”
on page 4-10)

• Global variables (see “Specifying Global Variable Type and Initial Value” in
the MATLAB Coder documentation.

• Structures (see Chapter 6, “Code Generation for MATLAB Structures”)

• Characters (see “Code Generation for Characters” on page 5-6)

• Function handles (see Chapter 9, “Code Generation for Function Handles”)

• Frames (see “Working with Frame-Based Signals” in the Simulink®

documentation.

• Variable length input and output argument lists (see Chapter 8, “Code
Generation for Variable-Size Data”)

1-9

1 About Code Generation from MATLAB Algorithms

• Subset of MATLAB toolbox functions (see Chapter 2, “Functions Supported
for Code Generation”)

• Ability to call functions (see “How MATLAB Resolves Function Calls in
Generated Code” on page 11-2)

1-10

MATLAB® Language Features Not Supported for Code Generation

MATLAB Language Features Not Supported for Code
Generation

MATLAB does not support the following features in generated code:

• Anonymous functions

• Cell arrays

• Java™

• Matrix deletion

• Nested functions

• Objects

• Recursion

• Sparse matrices

• try/catch statements

1-11

1 About Code Generation from MATLAB Algorithms

Related Products that Support Code Generation from
MATLAB

You can also generate code from MATLAB using other MathWorks® products
that require additional licenses:

To: Do This: Required
Licenses

Details

Generate C/C++
code from
MATLAB in a
Simulink model

Add MATLAB
Function blocks
and MATLAB
Truth Table
blocks to the
model.

• Simulink

• MATLAB
Coder

• Simulink®

Coder™
and/or
Embedded
Coder™

See:

• “Using the
MATLAB
Function
Block” in the
Simulink
documentation

• “Building a
Model with a
Stateflow®

Truth
Table” in the
Stateflow
documentation

Generate C/C++
code from a
Stateflow chart

Add MATLAB
functions and
MATLAB Truth
Table functions
to the chart.

• Stateflow

• Simulink

• MATLAB
Coder

• Simulink
Coder

See “Using
MATLAB
Functions
in Stateflow
Charts” and
“Truth Table
Functions” in
the Stateflow
documentation.

1-12

Related Products that Support Code Generation from MATLAB®

To: Do This: Required
Licenses

Details

Accelerate
fixed-point
algorithms in
your MATLAB
code

Compile the
MATLAB code
with the fiaccel
function.

Fixed-Point
Toolbox

See “Code
Acceleration and
Code Generation
from MATLAB
for Fixed-Point
Algorithms” in
the Fixed-Point
Toolbox
documentation.

Write and
simulate
MATLAB
functions that
manipulate data
associated with
entities

• SimEvents®

• Simulink

• MATLAB
Coder

• Simulink
Coder

See “Working
with Entities” in
the SimEvents
documentation.

Verify that
the simulation
behavior of a
model satisfies
test objectives

Use MATLAB
functions
for proving
properties and
generating tests

• Simulink®

Design
Verifier™

• Simulink

• MATLAB
Coder

• Simulink
Coder

See “About
Property
Proving” and
“About Test Case
Generation” in
the Simulink
Design Verifier
documentation

1-13

1 About Code Generation from MATLAB Algorithms

1-14

2

Functions Supported for
Code Generation

• “About Code Generation for Supported Functions” on page 2-2

• “Functions Supported for Code Generation — Alphabetical List” on page 2-3

• “Functions Supported for Code Generation — Categorical List” on page 2-58

2 Functions Supported for Code Generation

About Code Generation for Supported Functions
You can generate efficient C/C++ code for a subset of MATLAB and toolbox
functions that you call from MATLAB code. In generated code, each supported
function has the same name, arguments, and functionality as its MATLAB,
Fixed-Point Toolbox, or Signal Processing Toolbox™ counterparts. However,
to generate code for these functions, you must adhere to certain limitations
when calling them from your MATLAB source code. These limitations appear
in “Functions Supported for Code Generation — Alphabetical List” on page
2-3.

Note For more information on code generation for fixed-point algorithms,
refer to “Code Acceleration and Code Generation from MATLAB for
Fixed-Point Algorithms” in the Fixed-Point Toolbox documentation.

2-2

Functions Supported for Code Generation — Alphabetical List

Functions Supported for Code Generation — Alphabetical
List

Function Product Remarks/Limitations

abs MATLAB —

abs Fixed-Point
Toolbox

—

acos MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acosd MATLAB —

acosh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acot MATLAB —

acotd MATLAB —

acoth MATLAB —

acsc MATLAB —

acscd MATLAB —

acsch MATLAB —

add Fixed-Point
Toolbox

—

all MATLAB —

all Fixed-Point
Toolbox

—

and MATLAB —

2-3

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

angle MATLAB —

any MATLAB —

any Fixed-Point
Toolbox

—

asec MATLAB —

asecd MATLAB —

asech MATLAB —

asin MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

asind MATLAB —

asinh MATLAB —

assert MATLAB • Generates specified error messages at compile
time only if all input arguments are constants
or depend on constants. Otherwise, generates
specified error messages at run time.

atan MATLAB —

atan2 MATLAB —

atand MATLAB —

atanh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

2-4

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

barthannwin Signal Processing
Toolbox

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox™ license to
generate code.

bartlett Signal Processing
Toolbox

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

besselap Signal Processing
Toolbox

• Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-5

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

beta MATLAB —

betainc MATLAB —

betaln MATLAB —

bi2de Communications
System Toolbox™

• Requires a Communications System Toolbox
license to generate code.

bin2dec MATLAB —

bitand MATLAB • Does not support floating-point inputs. The
arguments must belong to an integer class.

bitand Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

bitandreduce Fixed-Point
Toolbox

—

bitcmp MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an integer class.

bitcmp Fixed-Point
Toolbox

—

bitconcat Fixed-Point
Toolbox

—

bitget MATLAB —

bitget Fixed-Point
Toolbox

—

bitmax MATLAB —

bitor MATLAB • Does not support floating-point inputs. The
arguments must belong to an integer class.

bitor Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

bitorreduce Fixed-Point
Toolbox

—

2-6

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

bitreplicate Fixed-Point
Toolbox

—

bitrevorder Signal Processing
Toolbox

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

bitrol Fixed-Point
Toolbox

—

bitror Fixed-Point
Toolbox

—

bitset MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an integer class.

bitset Fixed-Point
Toolbox

—

bitshift MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an integer class.

bitshift Fixed-Point
Toolbox

—

bitsliceget Fixed-Point
Toolbox

—

bitsll Fixed-Point
Toolbox

—

bitsra Fixed-Point
Toolbox

—

bitsrl Fixed-Point
Toolbox

—

bitxor MATLAB • Does not support floating-point inputs. The
arguments must belong to an integer class.

bitxor Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

2-7

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

bitxorreduce Fixed-Point
Toolbox

—

blackman Signal Processing
Toolbox

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

blackmanharris Signal Processing
Toolbox

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

blanks MATLAB —

2-8

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

bohmanwin Signal Processing
Toolbox

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

bsxfun MATLAB —

buttap Signal Processing
Toolbox

• Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

butter Signal Processing
Toolbox

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

2-9

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

buttord Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

cart2pol MATLAB —

cart2sph MATLAB —

cast MATLAB —

cat MATLAB —

ceil MATLAB —

ceil Fixed-Point
Toolbox

—

cfirpm Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-10

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

char MATLAB —

cheb1ap Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

cheb1ord Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

cheb2ap Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

2-11

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

cheb2ord Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

chebwin Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-12

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

cheby1 Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

cheby2 Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

chol MATLAB —

circshift MATLAB —

class MATLAB —

compan MATLAB —

complex MATLAB —

complex Fixed-Point
Toolbox

—

cond MATLAB —

conj MATLAB —

2-13

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

conj Fixed-Point
Toolbox

—

conv MATLAB —

conv Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

conv2 MATLAB —

convergent Fixed-Point
Toolbox

—

convn MATLAB —

cordiccexp Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordiccos Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Toolbox

• Variable-size signals are not supported.

2-14

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

cordicrotate Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicsin Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Toolbox

• Variable-size signals are not supported.

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —

cosd MATLAB —

cosh MATLAB —

cot MATLAB —

cotd MATLAB —

coth MATLAB —

cov MATLAB —

cross MATLAB • If supplied, dim must be a constant.

csc MATLAB —

cscd MATLAB —

csch MATLAB —

ctranspose MATLAB —

ctranspose Fixed-Point
Toolbox

—

cumprod MATLAB • Logical inputs are not supported. Cast input
to double first.

cumsum MATLAB • Logical inputs are not supported. Cast input
to double first.

cumtrapz MATLAB —

2-15

../../../techdoc/ref/arithmeticoperators.html

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

dct Signal Processing
Toolbox

• Requires DSP System Toolbox license to
generate code.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

de2bi Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

deconv MATLAB —

del2 MATLAB —

det MATLAB —

detrend MATLAB • If supplied and not empty, the input
argument bp must satisfy the following
requirements:

- Be real

- Be sorted in ascending order

- Restrict elements to integers in the
interval [1, n-2], where n is the number
of elements in a column of input argument
X , or the number of elements in X when X
is a row vector

- Contain all unique values

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

2-16

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

diag Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and
the dimension along which to calculate the
difference must be constants.

disp Fixed-Point
Toolbox

—

divide Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not supported.

dot MATLAB —

double MATLAB —

double Fixed-Point
Toolbox

—

downsample Signal Processing
Toolbox

—

dpss Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-17

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

eig MATLAB • QZ algorithm used in all cases. Consequently,
for the standard eigenvalue problem (B
identity), results are similar to those obtained
using the following code in MATLAB:

[V,D] = eig(A,eye(size(A)),'qz')

However, V may represent a different basis of
eigenvectors, and the eigenvalues in D may
not be in the same order.

• Options 'balance', 'nobalance', and
'chol' are not supported.

• Outputs are always of complex type.

ellip Signal Processing
Toolbox

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-18

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

ellipap Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

ellipke MATLAB —

ellipord Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

end Fixed-Point
Toolbox

—

eps MATLAB —

eps Fixed-Point
Toolbox

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and fi double signals.

eq MATLAB —

eq Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

2-19

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

erf MATLAB —

erfc MATLAB —

erfcinv MATLAB —

erfcx MATLAB —

erfinv MATLAB —

error MATLAB • This is an extrinsic call.

estimate
Fundamental
Matrix

Computer Vision
System Toolbox™

—

exp MATLAB —

expint MATLAB —

expm MATLAB —

expm1 MATLAB —

eye MATLAB • Dimensions must be real, nonnegative,
integer constants.

factor MATLAB • For double precision input, the maximum
value of A is 2^32-1.

• For single precision input, the maximum
value of A is 2^24-1.

factorial MATLAB —

false MATLAB • Dimensions must be real, nonnegative,
integer constants.

fft MATLAB • Length of input vector must be a power of 2.

fft2 MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftshift MATLAB —

2-20

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

fi Fixed-Point
Toolbox

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without any
input arguments is not supported.

• The syntax
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• Works for all input values when complete
numerictype information of the fi object is
provided.

• Works only for constant input values (value
of input must be known at compile time)
when complete numerictype information of
the fi object is not specified.

• numerictype object information must be
available for non-fixed-point Simulink inputs.

filter MATLAB —

filter Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

filter2 MATLAB —

2-21

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

filtfilt Signal Processing
Toolbox

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

fimath Fixed-Point
Toolbox

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

find MATLAB • Issues an error if a variable-sized input
becomes a row vector at run time.

Note This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-sized inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends on
the upper bounds of the size of the input. The
output might not match MATLAB when the
input array is a scalar or [] at run time. If
the input is a variable-length row vector, the
size of an empty output is 1-by-0, otherwise it
is 0-by-1.

2-22

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

fir1 Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

fir2 Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

fircls Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-23

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

fircls1 Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

firls Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

firpm Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-24

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

firpmord Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

firrcos Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

fix MATLAB —

fix Fixed-Point
Toolbox

—

2-25

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

flattopwin Signal Processing
Toolbox

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

flipdim MATLAB —

fliplr MATLAB —

flipud MATLAB —

floor MATLAB —

floor Fixed-Point
Toolbox

—

freqspace MATLAB —

freqz Signal Processing
Toolbox

• freqz with no output arguments produces a
plot only when the function call terminates
in a semicolon. See “freqz With No Output
Arguments”.

• Requires DSP System Toolbox license to
generate code.

fspecial Image Processing
Toolbox™

All inputs must be constants at compilation
time. Expressions or variables are allowed if
their values do not change.

full MATLAB —

2-26

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

fzero MATLAB • The first argument must be a function handle.
Does not support structure, inline function,
or string inputs for the first argument.

• Supports up to three output arguments. Does
not support the fourth output argument (the
output structure).

• Only supports the TolX and FunValCheck
fields of an options input structure. Ignores
all other options in an options input
structure. You cannot use the optimset
function to create the options structure.
Create this structure directly, for example,

opt.TolX = tol;
opt.FunValCheck = 'on';

The input structure field names must match
exactly.

gamma MATLAB —

gammainc MATLAB —

gammaln MATLAB —

gaussfir Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-27

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

gausswin Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

gcd MATLAB —

ge MATLAB —

ge Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

get Fixed-Point
Toolbox

• The syntax structure = get(o) is not
supported.

getlsb Fixed-Point
Toolbox

—

getmsb Fixed-Point
Toolbox

—

gradient MATLAB —

gt MATLAB —

gt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

hadamard MATLAB —

2-28

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

hamming Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

hankel MATLAB —

hann Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

hex2dec MATLAB —

hilb MATLAB —

hist MATLAB • Histogram bar plotting not supported; call
with at least one output argument.

• If supplied, the second argument x must be a
scalar constant.

• Inputs must be real.

2-29

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

horzcat Fixed-Point
Toolbox

—

hypot MATLAB —

idct Signal Processing
Toolbox

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

idivide MATLAB • opt string must be in lowercase.

• For efficient generated code, MATLAB rules
for divide by zero are supported only for the
'round' option.

ifft MATLAB • Length of input vector must be a power of 2.

• Output of ifft block is always complex.

• Does not support the 'symmetric' option.

ifft2 MATLAB • Length of input matrix dimensions must each
be a power of 2.

• Does not support the 'symmetric' option.

2-30

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

ifftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

• Does not support the 'symmetric' option.

ifftshift MATLAB —

imag MATLAB —

imag Fixed-Point
Toolbox

—

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

inf MATLAB • Dimensions must be real, nonnegative,
integer constants.

int8, int16, int32 MATLAB —

int, int8, int16, int32 Fixed-Point
Toolbox

—

interp1 MATLAB • Supports only linear and nearest
interpolation methods.

• Does not handle evenly spaced X indices
separately.

• X must be strictly monotonically increasing or
strictly monotonically decreasing; does not
reorder indices.

interp1q, see interp1 MATLAB • X must be strictly monotonically increasing or
strictly monotonically decreasing; does not
reorder indices.

2-31

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

intersect MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, for example zeros(1,0), to represent
the empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

intfilt Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

intmax MATLAB —

intmin MATLAB —

2-32

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

inv MATLAB Singular matrix inputs can produce nonfinite
values that differ from MATLAB results.

invhilb MATLAB —

ipermute MATLAB —

isa MATLAB —

iscell MATLAB —

ischar MATLAB —

iscolumn MATLAB —

iscolumn Fixed-Point
Toolbox

—

isdeployed MATLAB®

Compiler™
• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for all other targets

isempty MATLAB —

isempty Fixed-Point
Toolbox

—

isequal MATLAB —

isequal Fixed-Point
Toolbox

—

isequalwithequalnans MATLAB —

isfi Fixed-Point
Toolbox

—

isfield MATLAB • Does not support cell input for second
argument

isfimath Fixed-Point
Toolbox

—

isfimathlocal Fixed-Point
Toolbox

—

isfinite MATLAB —

2-33

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

isfinite Fixed-Point
Toolbox

—

isfloat MATLAB —

isinf MATLAB —

isinf Fixed-Point
Toolbox

—

isinteger MATLAB —

islogical MATLAB —

ismatrix MATLAB —

ismcc MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets.

• Returns false for all other targets.

ismember MATLAB • The second input, S, must be sorted in
ascending order.

• Complex inputs must be single or double.

isnan MATLAB —

isnan Fixed-Point
Toolbox

—

isnumeric MATLAB —

isnumeric Fixed-Point
Toolbox

—

isnumerictype Fixed-Point
Toolbox

—

isprime MATLAB • For double precision input, the maximum
value of A is 2^32-1.

• For single precision input, the maximum
value of A is 2^24-1.

isreal MATLAB —

2-34

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

isreal Fixed-Point
Toolbox

—

isrow MATLAB —

isrow Fixed-Point
Toolbox

—

isscalar MATLAB —

isscalar Fixed-Point
Toolbox

—

issigned Fixed-Point
Toolbox

—

issorted MATLAB —

issparse MATLAB —

isstruct MATLAB —

istrellis Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

isvector MATLAB —

isvector Fixed-Point
Toolbox

—

kaiser Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

2-35

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

kaiserord Signal Processing
Toolbox

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

kron MATLAB —

label2rgb Image Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix, map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a string containing
the name of a MATLAB colormap function or
a function handle of a colormap function.

• If you set the boundary color zerocolor to the
same color as one of the regions, label2rgb
will not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

lcm MATLAB —

ldivide MATLAB —

le MATLAB —

le Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

length MATLAB —

length Fixed-Point
Toolbox

—

2-36

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

levinson Signal Processing
Toolbox

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

linsolve MATLAB • The option structure must be a constant.

• Supports only a scalar option structure
input. It does not support arrays of option
structures.

• Only optimizes the UT and LT cases. All other
options are equivalent to using mldivide.

linspace MATLAB —

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

log2 MATLAB —

log10 MATLAB —

log1p MATLAB —

2-37

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

logical MATLAB —

logical Fixed-Point
Toolbox

—

logspace MATLAB —

lowerbound Fixed-Point
Toolbox

—

lsb Fixed-Point
Toolbox

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and double signals.

lt MATLAB —

lt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

lu MATLAB —

magic MATLAB —

max MATLAB —

max Fixed-Point
Toolbox

—

maxflat Signal Processing
Toolbox

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

mean MATLAB —

2-38

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

mean Fixed-Point
Toolbox

—

median MATLAB —

median Fixed-Point
Toolbox

—

meshgrid MATLAB —

min MATLAB —

min Fixed-Point
Toolbox

—

minus MATLAB —

minus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

mldivide MATLAB —

mod MATLAB • Performs all arithmetic in the output class.
Hence, results might not match MATLAB
due to different rounding errors.

mode MATLAB • Does not support third output argument C
(cell array)

mpower MATLAB —

mpower Fixed-Point
Toolbox

• The exponent input, k, must be constant; that
is, its value must be known at compile time.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed

2-39

../../../techdoc/ref/arithmeticoperators.html
../../../techdoc/ref/arithmeticoperators.html

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

using the SumMode property of the
governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

mpy Fixed-Point
Toolbox

• When you provide complex inputs to the
mpy function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —

mrdivide Fixed-Point
Toolbox

—

mtimes MATLAB —

mtimes Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

2-40

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integer constants

nargchk MATLAB • Output structure does not include stack
information.

nargin MATLAB —

nargout MATLAB • For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

nargoutchk MATLAB • Output structure does not include stack
information.

nchoosek MATLAB —

ndgrid MATLAB —

ndims MATLAB —

ndims Fixed-Point
Toolbox

—

ne MATLAB —

ne Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

2-41

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

nearest Fixed-Point
Toolbox

—

nextpow2 MATLAB —

nnz MATLAB —

nonzeros MATLAB —

norm MATLAB —

normest MATLAB —

not MATLAB —

nthroot MATLAB —

null MATLAB • Might return a different basis than MATLAB

• Does not support rational basis option (second
input)

numberofelements Fixed-Point
Toolbox

• Returns the number of elements of fi objects
in the generated code (works the same as
numel for fi objects in generated code).

numel MATLAB • Returns the number of elements of fi objects
in the generated code, rather than always
returning 1.

numerictype Fixed-Point
Toolbox

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned a
numerictype object that is populated with the
signal’s data type and scaling information.

• Returns the data type when the input is a
non-fixed-point signal.

• Use to create numerictype objects in the
generated code.

2-42

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

nuttallwin Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

ones MATLAB • Dimensions must be real, nonnegative,
integer constants

or MATLAB —

orth MATLAB • Might return a different basis than MATLAB

parzenwin Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

pascal MATLAB —

permute MATLAB —

permute Fixed-Point
Toolbox

—

pi MATLAB —

pinv MATLAB —

2-43

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

planerot MATLAB —

plus MATLAB —

plus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

pol2cart MATLAB —

poly MATLAB • Does not discard nonfinite input values

• Complex input always produces complex
output

poly2trellis Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

polyfit MATLAB —

polyval MATLAB —

pow2 Fixed-Point
Toolbox

—

power MATLAB • Generates an error during simulation and
returns NaN in generated code when both X
and Y are real, but power(X,Y) is complex.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation and
returns NaN in generated code when both X
and Y are real, but X .^ Y is complex. To get
the complex result, make the input value X
complex by using complex(X). For example,
complex(X).^Y.

power Fixed-Point
Toolbox

• The exponent input, k, must be constant; that
is, its value must be known at compile time.

primes MATLAB —

prod MATLAB —

2-44

../../../techdoc/ref/arithmeticoperators.html

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

qr MATLAB —

quad2d MATLAB
• Generates a warning if the size of the internal
storage arrays is not sufficient. If a warning
occurs, a possible workaround is to divide the
region of integration into pieces and sum the
integrals over each piece.

quadgk MATLAB —

quatconj Aerospace
Toolbox

—

quatdivide Aerospace
Toolbox

—

quatinv Aerospace
Toolbox

—

quatmod Aerospace
Toolbox

—

quatmultiply Aerospace
Toolbox

—

quatnorm Aerospace
Toolbox

—

quatnormalize Aerospace
Toolbox

—

rand MATLAB • Supports only the mt19937ar (formerly
known as ‘twister’) and mcg16807 (formerly
known as ‘seed’) generators.

• When seeding the generator, you must
terminate the call to rand with a semicolon
in the generated code.

• May not match MATLAB results if seeded
with negative values.

2-45

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

randn MATLAB • When seeding the generator, you must
terminate the call to rand with a semicolon
in the generated code.

• May not match MATLAB results if seeded
with negative values

randperm MATLAB —

range Fixed-Point
Toolbox

—

rank MATLAB —

rcond MATLAB —

rcosfir Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

rdivide MATLAB —

rdivide Fixed-Point
Toolbox

—

real MATLAB —

real Fixed-Point
Toolbox

—

reallog MATLAB —

realmax MATLAB —

realmax Fixed-Point
Toolbox

—

realmin MATLAB —

realmin Fixed-Point
Toolbox

—

realpow MATLAB —

realsqrt MATLAB —

2-46

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

rectwin Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

reinterpretcast Fixed-Point
Toolbox

—

rem MATLAB • Performs all arithmetic in the output class.
Hence, results might not match MATLAB
due to different rounding errors.

repmat MATLAB —

repmat Fixed-Point
Toolbox

—

resample Signal Processing
Toolbox

• The upsampling and downsampling factors
must be specified as constants. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

rescale Fixed-Point
Toolbox

—

2-47

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

reshape MATLAB —

reshape Fixed-Point
Toolbox

—

roots MATLAB • Output is always variable size

• Output is always complex

• Roots may not be in the same order as
MATLAB

• Roots of poorly conditioned polynomials may
not match MATLAB

rosser MATLAB —

rot90 MATLAB —

round MATLAB —

round Fixed-Point
Toolbox

—

rsf2csf MATLAB —

schur MATLAB Might sometimes return a different Schur
decomposition in generated code than in
MATLAB.

sec MATLAB —

secd MATLAB —

sech MATLAB —

2-48

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

setdiff MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, for example, zeros(1,0) to represent
the empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, output i is always
a column vector. If i is empty, it is 0-by-1,
never 0-by-0, even if the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

setxor MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0), to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

2-49

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

sfi Fixed-Point
Toolbox

—

sgolay Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

shiftdim MATLAB • Second argument must be a constant

• Class of second argument must be single or
double

sign MATLAB —

sign Fixed-Point
Toolbox

—

sin MATLAB —

sind MATLAB —

single MATLAB —

single Fixed-Point
Toolbox

—

sinh MATLAB —

size MATLAB —

2-50

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

size Fixed-Point
Toolbox

—

sort MATLAB —

sort Fixed-Point
Toolbox

—

sortrows MATLAB —

sosfilt Signal Processing
Toolbox • Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

sph2cart MATLAB —

squeeze MATLAB —

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

sqrt Fixed-Point
Toolbox

• Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

sqrtm MATLAB —

std MATLAB —

str2func MATLAB • String must be constant/known at compile
time

strcmp MATLAB • Arguments must be computable at compile
time.

struct MATLAB —

sub Fixed-Point
Toolbox

—

2-51

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

sub2ind MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

subsasgn Fixed-Point
Toolbox

—

subspace MATLAB —

subsref Fixed-Point
Toolbox

—

sum MATLAB —

sum Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

svd MATLAB —

swapbytes MATLAB Inheritance of the class of the input to
swapbytes in a MATLAB Function block is
supported only when the class of the input is
double. For non-double inputs, the input port
data types must be specified, not inherited.

tan MATLAB —

tand MATLAB —

tanh MATLAB —

taylorwin Signal Processing
Toolbox

• Inputs must be constant

• Requires DSP System Toolbox license to
generate code.

times MATLAB —

2-52

../../../techdoc/ref/arithmeticoperators.html

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

times Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

toeplitz MATLAB —

trace MATLAB —

trapz MATLAB —

transpose MATLAB —

transpose Fixed-Point
Toolbox

—

triang Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

2-53

../../../techdoc/ref/arithmeticoperators.html

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

true MATLAB • Dimensions must be real, nonnegative,
integer constants

tukeywin Signal Processing
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

typecast MATLAB • Value of string input argument type must
be lower case

• You might receive a size error when you use
typecast with inheritance of input port data
types in MATLAB Function blocks. To avoid
this error, specify the block’s input port data
types explicitly.

ufi Fixed-Point
Toolbox

—

uint8, uint16, uint32 MATLAB —

uint8, uint16, uint32 Fixed-Point
Toolbox

—

uminus MATLAB —

2-54

../../../techdoc/ref/arithmeticoperators.html

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

uminus Fixed-Point
Toolbox

—

union MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0) to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

unique MATLAB • When rows is not specified:

- The first input must be a row vector.

- If the vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0), to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs m and n are
always column vectors. If these outputs are

2-55

2 Functions Supported for Code Generation

Function Product Remarks/Limitations

empty, they are 0-by-1, never 0-by-0, even if
the output b is 0-by-0.

• Complex inputs must be single or double.

unwrap MATLAB • Row vector input is only supported when the
first two inputs are vectors and nonscalar

• Performs all arithmetic in the output class.
Hence, results might not match MATLAB
due to different rounding errors

upfirdn Signal Processing
Toolbox

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Variable-size inputs are not supported.

• Requires DSP System Toolbox license to
generate code

uplus MATLAB —

uplus Fixed-Point
Toolbox

—

upperbound Fixed-Point
Toolbox

—

upsample Signal Processing
Toolbox

Either declare input n as constant, or use the
assert function in the calling function to set
upper bounds for n. For example,

assert(n<10)

vander MATLAB —

2-56

../../../techdoc/ref/arithmeticoperators.html

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

var MATLAB —

vertcat Fixed-Point
Toolbox

—

wilkinson MATLAB —

xcorr Signal Processing
Toolbox

• Does not support the case where A is a matrix

• Does not support partial (abbreviated) strings
of biased, unbiased, coeff, or none

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code

xor MATLAB —

yulewalk Signal Processing
Toolbox

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specifying Constant Inputs at the Command
Line”.

• Requires DSP System Toolbox license to
generate code.

zeros MATLAB • Dimensions must be real, nonnegative,
integer constants

zp2tf MATLAB —

2-57

2 Functions Supported for Code Generation

Functions Supported for Code Generation — Categorical
List

In this section...

“ Aerospace Toolbox Functions” on page 2-59

“Arithmetic Operator Functions” on page 2-59

“Bit-Wise Operation Functions” on page 2-60

“Casting Functions” on page 2-60

“Communications System Toolbox Functions” on page 2-61

“Complex Number Functions” on page 2-61

“Computer Vision System Toolbox Functions” on page 2-62

“Data Type Functions” on page 2-63

“Derivative and Integral Functions” on page 2-63

“Discrete Math Functions” on page 2-63

“Error Handling Functions” on page 2-64

“Exponential Functions” on page 2-64

“Filtering and Convolution Functions” on page 2-65

“Fixed-Point Toolbox Functions” on page 2-65

“Histogram Functions” on page 2-74

“Image Processing Toolbox Functions” on page 2-74

“Input and Output Functions” on page 2-75

“Interpolation and Computational Geometry” on page 2-75

“Linear Algebra” on page 2-76

“Logical Operator Functions” on page 2-76

“MATLAB Compiler Functions” on page 2-77

“Matrix and Array Functions” on page 2-77

“Nonlinear Numerical Methods” on page 2-81

“Polynomial Functions” on page 2-81

2-58

Functions Supported for Code Generation — Categorical List

In this section...

“Relational Operator Functions” on page 2-81

“Rounding and Remainder Functions” on page 2-82

“Set Functions” on page 2-82

“Signal Processing Functions in MATLAB” on page 2-83

“Signal Processing Toolbox Functions” on page 2-83

“Special Values” on page 2-88

“Specialized Math” on page 2-88

“Statistical Functions” on page 2-89

“String Functions” on page 2-89

“Structure Functions” on page 2-90

“Trigonometric Functions” on page 2-90

Aerospace Toolbox Functions

Function Description

quatconj Calculate conjugate of quaternion

quatdivide Divide quaternion by another quaternion

quatinv Calculate inverse of quaternion

quatmod Calculate modulus of quaternion

quatmultiply Calculate product of two quaternions

quatnorm Calculate norm of quaternion

quatnormalize Normalize quaternion

Arithmetic Operator Functions
See Arithmetic Operators + - * / \ ^ ’ in the MATLAB Function Reference
documentation for detailed descriptions of the following operator equivalent
functions.

2-59

../../../techdoc/ref/arithmeticoperators.html

2 Functions Supported for Code Generation

Function Description

ctranspose Complex conjugate transpose (')

idivide Integer division with rounding option

isa Determine if input is object of given class

ldivide Left array divide

minus Minus (-)

mldivide Left matrix divide (\)

mpower Equivalent of array power operator (.^)

mrdivide Right matrix divide

mtimes Matrix multiply (*)

plus Plus (+)

power Array power

rdivide Right array divide

times Array multiply

transpose Matrix transpose (')

uminus Unary minus (-)

uplus Unary plus (+)

Bit-Wise Operation Functions

Function Description

swapbytes Swap byte ordering

Casting Functions

Data Type Description

cast Cast variable to different data type

char Create character array (string)

2-60

../../../techdoc/ref/arithmeticoperators.html
../../../techdoc/ref/arithmeticoperators.html
../../../techdoc/ref/arithmeticoperators.html
../../../techdoc/ref/arithmeticoperators.html
../../../techdoc/ref/arithmeticoperators.html
../../../techdoc/ref/arithmeticoperators.html
../../../techdoc/ref/arithmeticoperators.html

Functions Supported for Code Generation — Categorical List

Data Type Description

class Query class of object argument

double Convert to double-precision floating point

int8, int16, int32 Convert to signed integer data type

logical Convert to Boolean true or false data type

single Convert to single-precision floating point

typecast Convert data types without changing underlying data

uint8, uint16,
uint32

Convert to unsigned integer data type

Communications System Toolbox Functions
Function Remarks/Limitations

bi2de —

de2bi —

istrellis —

poly2trellis —

rcosfir —

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary components

conj Return the conjugate of a complex number

imag Return the imaginary part of a complex number

isnumeric Return true for numeric arrays

isreal Return false (0) for a complex number

isscalar Return true if array is a scalar

2-61

2 Functions Supported for Code Generation

Function Description

real Return the real part of a complex number

unwrap Correct phase angles to produce smoother phase plots

Computer Vision System Toolbox Functions

Function Description

epipolarLine Compute epipolar lines for stereo images

estimateFundamentalMatrix Estimate fundamental matrix from corresponding points in
stereo image

estimateUncalibratedRectificationUncalibrated stereo rectification

extractFeatures Extract interest point descriptors

isEpipoleInImage Determine whether image contains epipole

lineToBorderPoints Intersection points of lines in image and image border

matchFeatures Find matching image features

2-62

Functions Supported for Code Generation — Categorical List

Data Type Functions

Function Description

iscell Determine whether input is cell array

nargchk Validate number of input arguments

nargoutchk Validate number of output arguments

str2func Construct function handle from function name string

Derivative and Integral Functions

Function Description

cumtrapz Cumulative trapezoidal numerical integration

del2 Discrete Laplacian

diff Differences and approximate derivatives

gradient Numerical gradient

trapz Trapezoidal numerical integration

Discrete Math Functions

Function Description

factor Return a row vector containing the prime factors of n

gcd Return an array containing the greatest common divisors of the
corresponding elements of integer arrays

isprime Array elements that are prime numbers

lcm Least common multiple of corresponding elements in arrays

nchoosek Binomial coefficient or all combinations

primes Generate list of prime numbers

2-63

2 Functions Supported for Code Generation

Error Handling Functions

Function Description

assert Generate error when condition is violated

error Display message and abort function

Exponential Functions

Function Description

exp Exponential

expm Matrix exponential

expm1 Compute exp(x)-1 accurately for small values of x

factorial Factorial function

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for small values of x

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

2-64

Functions Supported for Code Generation — Categorical List

Filtering and Convolution Functions

Function Description

conv Convolution and polynomial multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Fixed-Point Toolbox Functions
In addition to any function-specific limitations listed in the table, the following
general limitations always apply to the use of Fixed-Point Toolbox functions
in generated code or with fiaccel:

• fipref and quantizer objects are not supported.

• Dot notation is only supported for getting the values of fimath and
numerictype properties. Dot notation is not supported for fi objects, and it
is not supported for setting properties.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given variable after
that variable has been created.

• The boolean and ScaledDouble values of the DataTypeMode and DataType
properties are not supported.

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• The numel function returns the number of elements of fi objects in the
generated code.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

2-65

2 Functions Supported for Code Generation

• All general limitations of C/C++ code generated from MATLAB apply. See
“MATLAB Language Features Not Supported for Code Generation” on page
1-11 for more information.

Function Remarks/Limitations

abs N/A

add N/A

all N/A

any N/A

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

bitsliceget N/A

bitsll N/A

bitsra N/A

bitsrl N/A

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

complex N/A

2-66

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

conj N/A

conv • Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

• For variable-sized signals, you may see different
results between generated code and MATLAB.

- In the generated code, the output for
variable-sized signals is always computed using
the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode property
of the governing fimath when both inputs
are nonscalar. However, if either input is a
scalar, MATLAB computes the output using the
ProductMode of the governing fimath.

convergent N/A

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar
integer value that is not a fi object.

disp —

2-67

2 Functions Supported for Code Generation

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its
value must be known at compile time so that it can
be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the
syntax T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single
and fi double signals.

eq Not supported for fixed-point signals with different
biases.

fi • Use to create a fixed-point constant or variable in
the generated code.

• The default constructor syntax without any input
arguments is not supported.

• The syntax
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• Works for all input values when complete
numerictype information of the fi object is
provided.

• Works only for constant input values (value of
input must be known at compile time) when
complete numerictype information of the fi object
is not specified.

2-68

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

• numerictype object information must be available
for nonfixed-point Simulink inputs.

filter • Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

fimath • Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned a
fimath object. You define this object in the
MATLAB Function block dialog in the Model
Explorer.

• Use to create fimath objects in the generated code.

fix N/A

floor N/A

ge Not supported for fixed-point signals with different
biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different
biases.

horzcat N/A

imag N/A

int, int8, int16, int32N/A

iscolumn N/A

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

isfimathlocal N/A

2-69

2 Functions Supported for Code Generation

Function Remarks/Limitations

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different
biases.

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single
and double signals.

lt Not supported for fixed-point signals with different
biases.

max N/A

mean N/A

median N/A

min N/A

minus Any non-fi input must be constant; that is, its value
must be known at compile time so that it can be cast
to a fi object.

2-70

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

mpower • The exponent input, k, must be constant; that is,
its value must be known at compile time.

• Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

• For variable-sized signals, you may see different
results between the generated code and MATLAB.

- In the generated code, the output for
variable-sized signals is always computed using
the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode property
of the governing fimath when the first input,
a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

mpy When you provide complex inputs to the mpy function
inside of a MATLAB Function block, you must declare
the input as complex before running the simulation.
To do so, go to the Ports and data manager and set
the Complexity parameter for all known complex
inputs to On.

mrdivide N/A

mtimes • Any non-fi input must be constant; that is, its
value must be known at compile time so that it can
be cast to a fi object.

• Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

• For variable-sized signals, you may see different
results between the generated code and MATLAB.

2-71

2 Functions Supported for Code Generation

Function Remarks/Limitations

- In the generated code, the output for
variable-sized signals is always computed using
the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode property
of the governing fimath when both inputs
are nonscalar. However, if either input is a
scalar, MATLAB computes the output using the
ProductMode of the governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different
biases.

nearest N/A

numberofelements numberofelements and numel both work the same as
MATLAB numel for fi objects in the generated code.

numerictype • Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned a
numerictype object that is populated with the
signal’s data type and scaling information.

• Returns the data type when the input is a
nonfixed-point signal.

• Use to create numerictype objects in generated
code.

permute N/A

plus Any non-fi input must be constant; that is, its value
must be known at compile time so that it can be cast
to a fi object.

pow2 N/A

power The exponent input, k, must be constant; that is, its
value must be known at compile time.

range N/A

2-72

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

repmat N/A

rescale N/A

reshape N/A

round N/A

sfi N/A

sign N/A

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

sub N/A

subsasgn N/A

subsref N/A

sum Variable-sized inputs are only supported when the
SumMode property of the governing fimath is set to
Specify precision or Keep LSB.

2-73

2 Functions Supported for Code Generation

Function Remarks/Limitations

times • Any non-fi input must be constant; that is, its
value must be known at compile time so that it can
be cast to a fi object.

• When you provide complex inputs to the times
function inside of a MATLAB Function block, you
must declare the input as complex before running
the simulation. To do so, go to the Ports and data
manager and set the Complexity parameter for
all known complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar
integer value that is not a fi object.

triu If supplied, the index, k, must be a real and scalar
integer value that is not a fi object.

ufi N/A

uint8, uint16, uint32N/A

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

Histogram Functions

Function Description

hist Non-graphical histogram

histc Histogram count

Image Processing Toolbox Functions
You must have the Image Processing Toolbox software installed to use these
functions in C/C++ code generated from MATLAB.

2-74

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

fspecial All inputs must be constants at compilation time. Expressions or
variables are allowed if their values do not change.

label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.

Input and Output Functions

Function Description

nargin Return the number of input arguments a user has supplied

nargout Return the number of output return values a user has requested

Interpolation and Computational Geometry

Function Description

cart2pol Transform Cartesian coordinates to polar or cylindrical

cart2sph Transform Cartesian coordinates to spherical

interp1 One-dimensional interpolation (table lookup)

interp1q Quick one-dimensional linear interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

2-75

2 Functions Supported for Code Generation

Function Description

pol2cart Transform polar or cylindrical coordinates to Cartesian

sph2cart Transform spherical coordinates to Cartesian

Linear Algebra

Function Description

linsolve Solve linear system of equations

null Null space

orth Range space of matrix

rsf2csf Convert real Schur form to complex Schur form

schur Schur decomposition

sqrtm Matrix square root

Logical Operator Functions

Function Description

and Logical AND (&&)

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

not Logical NOT (~)

2-76

Functions Supported for Code Generation — Categorical List

Function Description

or Logical OR (||)

xor Logical exclusive-OR

MATLAB Compiler Functions

Function Description

isdeployed Determine whether code is running in deployed or MATLAB mode

ismcc Test if code is running during compilation process (using mcc)

Matrix and Array Functions

Function Description

abs Return absolute value and complex magnitude of an array

all Test if all elements are nonzero

angle Phase angle

any Test for any nonzero elements

bsxfun Applies element-by-element binary operation to two arrays with
singleton expansion enabled

cat Concatenate arrays along specified dimension

circshift Shift array circularly

compan Companion matrix

cond Condition number of a matrix with respect to inversion

cov Covariance matrix

cross Vector cross product

cumprod Cumulative product of array elements

cumsum Cumulative sum of array elements

det Matrix determinant

2-77

2 Functions Supported for Code Generation

Function Description

diag Return a matrix formed around the specified diagonal vector and the
specified diagonal (0, 1, 2,...) it occupies

diff Differences and approximate derivatives

dot Vector dot product

eig Eigenvalues and eigenvectors

eye Identity matrix

false Return an array of 0s for the specified dimensions

find Find indices and values of nonzero elements

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

full Convert sparse matrix to full matrix

hadamard Hadamard matrix

hankel Hankel matrix

hilb Hilbert matrix

ind2sub Subscripts from linear index

inv Inverse of a square matrix

invhilb Inverse of Hilbert matrix

ipermute Inverse permute dimensions of array

iscolumn True if input is a column vector

isempty Determine whether array is empty

isequal Test arrays for equality

isequalwithequalnans Test arrays for equality, treating NaNs as equal

isfinite Detect finite elements of an array

isfloat Determine if input is floating-point array

isinf Detect infinite elements of an array

isinteger Determine if input is integer array

2-78

Functions Supported for Code Generation — Categorical List

Function Description

islogical Determine if input is logical array

ismatrix True if input is a matrix

isnan Detect NaN elements of an array

isrow True if input is a row vector

issparse Determine whether input is sparse

isvector Determine whether input is vector

kron Kronecker tensor product

length Return the length of a matrix

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced vectors

lu Matrix factorization

magic Magic square

max Maximum elements of a matrix

min Minimum elements of a matrix

ndgrid Generate arrays for N-D functions and interpolation

ndims Number of dimensions

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

norm Vector and matrix norms

normest 2-norm estimate

numel Number of elements in array or subscripted array

ones Create a matrix of all 1s

pascal Pascal matrix

permute Rearrange dimensions of array

pinv Pseudoinverse of a matrix

planerot Givens plane rotation

2-79

2 Functions Supported for Code Generation

Function Description

prod Product of array element

qr Orthogonal-triangular decomposition

randperm Random permutation

rank Rank of matrix

rcond Matrix reciprocal condition number estimate

repmat Replicate and tile an array

reshape Reshape one array into the dimensions of another

rosser Classic symmetric eigenvalue test problem

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sign Signum function

size Return the size of a matrix

sort Sort elements in ascending or descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

sub2ind Single index from subscripts

subspace Angle between two subspaces

sum Sum of matrix elements

toeplitz Toeplitz matrix

trace Sum of diagonal elements

tril Extract lower triangular part

triu Extract upper triangular part

true Return an array of logical (Boolean) 1s for the specified dimensions

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

zeros Create a matrix of all zeros

2-80

Functions Supported for Code Generation — Categorical List

Nonlinear Numerical Methods

Function Description

fzero Find root of continuous function of one variable

quad2d Numerically evaluate double integral over planar region

quadgk Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

Polynomial Functions

Function Description

poly Polynomial with specified roots

polyfit Polynomial curve fitting

polyval Polynomial evaluation

roots Polynomial roots

Relational Operator Functions

Function Description

eq Equal (==)

ge Greater than or equal to (>=)

gt Greater than (>)

le Less than or equal to (<=)

lt Less than (<)

ne Not equal (~=)

2-81

2 Functions Supported for Code Generation

Rounding and Remainder Functions

Function Description

ceil Round toward plus infinity

ceil Round toward positive infinity

convergent Round toward nearest integer with ties rounding to nearest even integer

fix Round toward zero

fix Round toward zero

floor Round toward minus infinity

floor Round toward negative infinity

mod Modulus (signed remainder after division)

nearest Round toward nearest integer with ties rounding toward positive infinity

rem Remainder after division

round Round toward nearest integer

round Round fi object toward nearest integer or round input data using
quantizer object

Set Functions

Function Description

intersect Find set intersection of two vectors

ismember Array elements that are members of set

issorted Determine whether set elements are in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

2-82

Functions Supported for Code Generation — Categorical List

Signal Processing Functions in MATLAB

Function Description

chol Cholesky factorization

conv Convolution and polynomial multiplication

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to center of spectrum

filter Filter a data sequence using a digital filter that works for both real and
complex inputs

freqspace Frequency spacing for frequency response

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier transform

ifftn N-D inverse discrete Fourier transform

ifftshift Inverse discrete Fourier transform shift

svd Singular value decomposition

zp2tf Convert zero-pole-gain filter parameters to transfer function form

Signal Processing Toolbox Functions

Note All of these functions require a DSP System Toolbox license to generate
code.

2-83

2 Functions Supported for Code Generation

Note Many Signal Processing Toolbox functions require constant inputs in
generated code. To specify a constant input for codegen, use coder.Constant.
For more information, see the “MATLAB Coder” documentation.

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bartlett Window length must be a constant. Expressions or variables are
allowed if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

bitrevorder —

blackman Window length must be a constant. Expressions or variables are
allowed if their values do not change.

blackmanharris Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bohmanwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

buttap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

butter Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

buttord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cfirpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

2-84

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

cheb2ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

chebwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby1 All Inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

dct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —

dpss All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellip Inputs must be constant. Expressions or variables are allowed if their
values do not change.

ellipap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellipord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

filtfilt Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

fir1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fir2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

2-85

2 Functions Supported for Code Generation

Function Remarks/Limitations

firls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpmord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firrcos All inputs must be constants. Expressions or variables are allowed if
their values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

freqz freqz with no output arguments produces a plot only when the function
call terminates in a semicolon. See “freqzWith No Output Arguments”.

gaussfir All inputs must be constant. Expressions or variables are allowed if
their values do not change.

gausswin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hamming All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hann All inputs must be constant. Expressions or variables are allowed if
their values do not change.

idct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiserord —

levinson If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

2-86

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

maxflat All inputs must be constant. Expressions or variables are allowed if
their values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

parzenwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

rectwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

resample The upsampling and downsampling factors must be specified as
constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if
their values do not change.

sosfilt —

taylorwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

triang All inputs must be constant. Expressions or variables are allowed if
their values do not change.

tukeywin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

upfirdn • Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values
do not change.

• Variable-size inputs are not supported.

upsample Either declare input n as constant, or use the assert function in the
calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

2-87

2 Functions Supported for Code Generation

Special Values

Symbol Description

eps Floating-point relative accuracy

inf IEEE® arithmetic representation for positive infinity

intmax Largest possible value of specified integer type

intmin Smallest possible value of specified integer type

NaN or nan Not a number

pi Ratio of the circumference to the diameter for a circle

rand Uniformly distributed pseudorandom numbers

randn Normally distributed random numbers

realmax Largest positive floating-point number

realmin Smallest positive floating-point number

Specialized Math

Symbol Description

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipke Complete elliptic integrals of first and second kind

erf Error function

erfc Complementary error function

erfcinv Inverse of complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

expint Exponential integral

gamma Gamma function

2-88

Functions Supported for Code Generation — Categorical List

Symbol Description

gammainc Incomplete gamma function

gammaln Logarithm of the gamma function

Statistical Functions

Function Description

corrcoef Correlation coefficients

mean Average or mean value of array

median Median value of array

mode Most frequent values in array

std Standard deviation

var Variance

String Functions

Function Description

bin2dec Convert binary number string to decimal number

bitmax Maximum double-precision floating-point integer

blanks Create string of blank characters

char Create character array (string)

hex2dec Convert hexadecimal number string to decimal number

ischar True for character array (string)

strcmp Return a logical result for the comparison of two strings; limited to
strings known at compile time

2-89

2 Functions Supported for Code Generation

Structure Functions

Function Description

isfield Determine whether input is structure array field

struct Create structure

isstruct Determine whether input is a structure

Trigonometric Functions

Function Description

acos Inverse cosine

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse cosecant and inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atan2 Four quadrant inverse tangent

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

2-90

Functions Supported for Code Generation — Categorical List

Function Description

cos Cosine

cosd Cosine; result in degrees

cosh Hyperbolic cosine

cot Cotangent; result in radians

cotd Cotangent; result in degrees

coth Hyperbolic cotangent

csc Cosecant; result in radians

cscd Cosecant; result in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant; result in radians

secd Secant; result in degrees

sech Hyperbolic secant

sin Sine

sind Sine; result in degrees

sinh Hyperbolic sine

tan Tangent

tand Tangent; result in degrees

tanh Hyperbolic tangent

2-91

2 Functions Supported for Code Generation

2-92

3

System Objects Supported
for Code Generation

• “About Code Generation for System Objects” on page 3-2

• “Communications System Toolbox System Objects” on page 3-3

• “DSP System Toolbox System Objects” on page 3-8

• “Computer Vision System Toolbox System Objects” on page 3-13

3 System Objects Supported for Code Generation

About Code Generation for System Objects
You can generate C/C++ code for a subset of system objects provided by
Communications System Toolbox, DSP System Toolbox, and Computer Vision
System Toolbox.

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets. For general information on MATLAB objects, see
Object-Oriented Programming in the MATLAB documentation.

3-2

Communications System Toolbox™ System Objects

Communications System Toolbox System Objects
You can generate C/C++ code for the following Communications System
Toolbox System objects. For information on how to use these System
objects, see “Generating Code for Communications System Objects” in the
Communications System Toolbox documentation.

Supported Communications System Toolbox System Objects

Object Description

Channels

comm.AWGNChannel Add white Gaussian noise to input signal

comm.BinarySymmetricChannel Introduce binary errors

Equalizers

comm.MLSEEqualizer Equalize using maximum likelihood sequence
estimation

Filters

comm.IntegrateAndDumpFilter Integrate discrete-time signal with periodic resets

Measurements

comm.EVM Measure error vector magnitude

comm.MER Measure modulation error ratio

Sources

comm.KasamiSequence Generate a Kasami sequence

comm.PNSequence Generate a pseudo-noise (PN) sequence

Error Detection and Correction – Convolutional Coding

comm.ConvolutionalEncoder Convolutionally encode binary data

comm.ViterbiDecoder Decode convolutionally encoded data using Viterbi
algorithm

Error Detection and Correction – Cyclic Redundancy Check Coding

comm.CRCDetector Detect errors in input data using cyclic redundancy
code

3-3

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.CRCGenerator Generate cyclic redundancy code bits and append to
input data

Interleavers – Block

comm.AlgebraicDeinterleaver Deinterleave input symbols using algebraically
derived permutation vector

comm.AlgebraicInterleaver Permute input symbols using an algebraically
derived permutation vector

comm.BlockDeinterleaver Deinterleave input symbols using permutation
vector

comm.BlockInterleaver Permute input symbols using a permutation vector

comm.MatrixDeinterleaver Deinterleave input symbols using permutation
matrix

comm.MatrixInterleaver Permute input symbols using permutation matrix

comm.MatrixHelicalScanDeinterleaver Deinterleave input symbols by filling a matrix along
diagonals

comm.MatrixHelicalScanInterleaver Permute input symbols by selecting matrix elements
along diagonals

Interleavers – Convolutional

comm.ConvolutionalDeinterleaver Restore ordering of symbols using shift registers

comm.ConvolutionalInterleaver Permute input symbols using shift registers

comm.HelicalDeinterleaver Restore ordering of symbols using a helical array

comm.HelicalInterleaver Permute input symbols using a helical array

comm.MultiplexedDeinterleaver Restore ordering of symbols using a set of shift
registers with specified delays

comm.MultiplexedInterleaver Permute input symbols using a set of shift registers
with specified delays

MIMO

3-4

Communications System Toolbox™ System Objects

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.OSTBCCombiner Combine inputs using orthogonal space-time block
code

comm.OSTBCEncoder Encode input message using orthogonal space-time
block code

Digital Baseband Modulation – Phase

comm.BPSKDemodulator Demodulate using binary PSK method

comm.BPSKModulator Modulate using binary PSK method

comm.DBPSKModulator Modulate using differential binary PSK method

comm.DPSKDemodulator Demodulate using M-ary DPSK method

comm.DPSKModulator Modulate using M-ary DPSK method

comm.DQPSKDemodulator Demodulate using differential quadrature PSK
method

comm.DQPSKModulator Modulate using differential quadrature PSK method

comm.DBPSKDemodulator Demodulate using M-ary DPSK method

comm.QPSKDemodulator Demodulate using quadrature PSK method

comm.QPSKModulator Modulate using quadrature PSK method

comm.PSKDemodulator Demodulate using M-ary PSK method

comm.PSKModulator Modulate using M-ary PSK method

comm.OQPSKDemodulator Demodulate offset quadrature PSK modulated data

comm.OQPSKModulator Modulate using offset quadrature PSK method

Digital Baseband Modulation – Amplitude

comm.GeneralQAMDemodulator Demodulate using arbitrary QAM constellation

comm.GeneralQAMModulator Modulate using arbitrary QAM constellation

comm.PAMDemodulator Demodulate using M-ary PAM method

comm.PAMModulator Modulate using M-ary PAM method

comm.RectangularQAMDemodulator Demodulate using rectangular QAM method

3-5

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.RectangularQAMModulator Modulate using rectangular QAM method

Digital Baseband Modulation – Frequency

comm.FSKDemodulator Demodulate using M-ary FSK method

comm.FSKModulator Modulate using M-ary FSK method

Digital Baseband Modulation – Trelllis Coded

comm.GeneralQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to arbitrary QAM constellation

comm.GeneralQAMTCMModulator Convolutionally encode binary data and map using
arbitrary QAM constellation

comm.PSKTCMDemodulator Demodulate convolutionally encoded data mapped
to M-ary PSK constellation

comm.PSKTCMModulator Convolutionally encode binary data and map using
M-ary PSK constellation

comm.RectangularQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to rectangular QAM constellation

comm.RectangularQAMTCMModulator Convolutionally encode binary data and map using
rectangular QAM constellation

Digital Baseband Modulation – Continuous Phase

comm.CPFSKDemodulator Demodulate using CPFSK method and Viterbi
algorithm

comm.CPFSKModulator Modulate using CPFSK method

comm.CPMDemodulator Demodulate using CPM method and Viterbi
algorithm

comm.CPMModulator Modulate using CPM method

comm.GMSKDemodulator Demodulate using GMSK method and the Viterbi
algorithm

comm.GMSKModulator Modulate using GMSK method

3-6

Communications System Toolbox™ System Objects

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.MSKDemodulator Demodulate using MSK method and the Viterbi
algorithm

comm.MSKModulator Modulate using MSK method

RF Impairments

comm.PhaseFrequencyOffset Apply phase and frequency offsets to input signal

Synchronization – Timing Phase

comm.EarlyLateGateTimingSynchronizer Recover symbol timing phase using early-late gate
method

comm.GardnerTimingSynchronizer Recover symbol timing phase using Gardner’s
method

comm.GMSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MuellerMullerTimingSynchronizer Recover symbol timing phase using Mueller-Muller
method

Converters

comm.BitToInteger Convert vector of bits to vector of integers

comm.IntegerToBit Convert vector of integers to vector of bits

Sequence Operators

comm.Descrambler Descramble input signal

comm.Scrambler Scramble input signal

3-7

3 System Objects Supported for Code Generation

DSP System Toolbox System Objects
You can generate C/C++ code for the following DSP System Toolbox System
objects. For information on how to use these System objects, see “Code
Generation with System Objects” in the DSP System Toolbox documentation.

Supported DSP System Toolbox System Objects

Object Description

Estimation

dsp.BurgAREstimator Compute estimate of autoregressive model parameters
using Burg method

dsp.BurgSpectrumEstimator Compute parametric spectral estimate using Burg
method

Note For code generation, you cannot call the reset
method before calling the step method.

dsp.CepstralToLPC Convert cepstral coefficients to linear prediction
coefficients

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LPCToAutocorrelation Convert linear prediction coefficients to autocorrelation
coefficients

dsp.LPCToCepstral Convert linear prediction coefficients to cepstral
coefficients

dsp.LPCToLSF Convert linear prediction coefficients to line spectral
frequencies

dsp.LPCToLSP Convert linear prediction coefficients to line spectral
pairs

dsp.LPCToRC Convert linear prediction coefficients to reflection
coefficients

3-8

DSP System Toolbox™ System Objects

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.LSFToLPC Convert line spectral frequencies to linear prediction
coefficients

dsp.LSPToLPC Convert line spectral pairs to linear prediction
coefficients

dsp.RCToAutocorrelation Convert reflection coefficients to autocorrelation
coefficients

dsp.RCToLPC Convert reflection coefficients to linear prediction
coefficients

Filters

dsp.BiquadFilter Model biquadratic IIR (SOS) filters

dsp.DigitalFilter Filter each channel of input over time using
discrete-time filter implementations

dsp.FIRInterpolator Upsample and filter input signals

dsp.FIRRateConverter Upsample, filter and downsample input signals

dsp.LMSFilter Compute output, error, and weights using LMS
adaptive algorithm

Math Operations

dsp.ArrayVectorAdder Add vector to array along specified dimension

dsp.ArrayVectorDivider Divide array by vector along specified dimension

dsp.ArrayVectorMultiplier Multiply array by vector along specified dimension

dsp.ArrayVectorSubtractor Subtract vector from array along specified dimension

dsp.CumulativeProduct Compute cumulative product of channel, column, or
row elements

dsp.CumulativeSum Compute cumulative sum of channel, column, or row
elements

dsp.LDLFactor Factor square Hermitian positive definite matrices
into lower, upper, and diagonal components

3-9

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LowerTriangularSolver Solve LX = B for X when L is lower triangular matrix

dsp.LUFactor Factor square matrix into lower and upper triangular
matrices

dsp.Normalizer Normalize input

dsp.UpperTriangularSolver Solve UX = B for X when U is upper triangular matrix

Quantizers

dsp.ScalarQuantizerDecoder Convert each index value into quantized output value

dsp.ScalarQuantizerEncoder Perform scalar quantization encoding

dsp.VectorQuantizerDecoder Find vector quantizer codeword for given index value

dsp.VectorQuantizerEncoder Perform vector quantization encoding

Signal Management

dsp.Counter Count up or down through specified range of numbers

dsp.DelayLine Rebuffer sequence of inputs with one-sample shift

Signal Operations

dsp.Convolver Compute convolution of two inputs

dsp.Delay Delay input by specified number of samples or frames

dsp.Interpolator Interpolate values of real input samples

dsp.NCO Generate real or complex sinusoidal signals

dsp.PeakFinder Determine extrema (maxima or minima) in input
signal

dsp.PhaseUnwrapper Unwrap signal phase

dsp.VariableFractionalDelay Delay input by time-varying fractional number of
sample periods

3-10

DSP System Toolbox™ System Objects

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.VariableIntegerDelay Delay input by time-varying integer number of sample
periods

dsp.Window Generate or apply window function

dsp.ZeroCrossingDetector Calculate number of zero crossings of a signal

Signal Processing Sinks

dsp.AudioPlayer Write audio data to computer’s audio device

dsp.AudioFileWriter Write audio file

dsp.UDPSender Send UDP packets to the network

Signal Processing Sources

dsp.AudioFileReader Read audio samples from an audio file

dsp.AudioRecorder Read audio data from computer’s audio device

dsp.UDPReceiver Receive UDP packets from the network

dsp.SineWave Generate discrete sine wave

Statistics

dsp.Autocorrelator Compute autocorrelation of vector inputs

dsp.Crosscorrelator Compute cross-correlation of two inputs

dsp.Histogram Output histogram of an input or sequence of inputs

dsp.Maximum Compute maximum value in input

dsp.Mean Compute average or mean value in input

dsp.Median Compute median value in input

dsp.Minimum Compute minimum value in input

dsp.RMS Compute root-mean-square of vector elements

dsp.StandardDeviation Compute standard deviation of vector elements

3-11

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.Variance Compute variance of input or sequence of inputs

Transforms

dsp.AnalyticSignal Compute analytic signals of discrete-time inputs

Note For code generation, you cannot call the reset
method before calling the step method.

dsp.DCT Compute discrete cosine transform (DCT) of input

dsp.FFT Compute fast Fourier transform (FFT) of input

dsp.IDCT Compute inverse discrete cosine transform (IDCT) of
input

dsp.IFFT Compute inverse fast Fourier transform (IFFT) of
input

3-12

Computer Vision System Toolbox™ System Objects

Computer Vision System Toolbox System Objects
You can generate C/C++ code for the following Computer Vision System
Toolbox System objects. For more information on how to use these System
objects, see the Computer Vision System Toolbox documentation.

Supported Computer Vision System Toolbox System Objects

Object Description

Analysis & Enhancement

vision.BoundaryTracer Trace object boundaries in binary images

vision.ContrastAdjuster Adjust image contrast by linear scaling

vision.Deinterlacer Remove motion artifacts by deinterlacing input
video signal

vision.EdgeDetector Find edges of objects in images

vision.ForegroundDetector Detect foreground using Gaussian Mixture
Models

vision.HistogramEqualizer Enhance contrast of images using histogram
equalization

vision.TemplateMatcher Perform template matching by shifting
template over image

Conversions

vision.Autothresholder Convert intensity image to binary image

vision.ChromaResampler Downsample or upsample chrominance
components of images

vision.ColorSpaceConverter Convert color information between color spaces

vision.DemosaicInterpolator Demosaic Bayer’s format images

vision.GammaCorrector Apply or remove gamma correction from
images or video streams

vision.ImageComplementer Compute complement of pixel values in binary,
intensity, or RGB images

3-13

3 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.ImageDataTypeConverter Convert and scale input image to specified
output data type

Filtering

vision.Convolver Compute 2-D discrete convolution of two input
matrices

vision.ImageFilter Perform 2-D FIR filtering of input matrix

vision.MedianFilter 2D median filtering

Geometric Transformations

vision.GeometricRotator Rotate image by specified angle

vision.GeometricRotator Enlarge or shrink image size

vision.GeometricScaler Shift rows or columns of image by linearly
varying offset

vision.GeometricTransformer Apply projective or affine transformation to an
image

vision.GeometricTransformEstimator Estimate geometric transformation from
matching point pairs

vision.GeometricTranslator Translate image in two-dimensional plane
using displacement vector

Morphological Operations

vision.ConnectedComponentLabeler Label and count the connected regions in a
binary image

vision.MorphologicalClose Perform morphological closing on image

vision.MorphologicalDilate Perform morphological dilation on an image

vision.MorphologicalErode Perform morphological erosion on an image

3-14

Computer Vision System Toolbox™ System Objects

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.MorphologicalOpen Perform morphological opening on an image

Sinks

vision.DeployableVideoPlayer Send video data to computer screen

vision.VideoFileWriter Write video frames and audio samples to
multimedia file

Sources

vision.VideoFileReader Read video frames and audio samples from
compressed multimedia file

Statistics

vision.Autocorrelator Compute 2-D autocorrelation of input matrix

vision.BlobAnalysis Compute statistics for connected regions in a
binary image

vision.Crosscorrelator Compute 2-D cross-correlation of two input
matrices

vision.Histogram Generate histogram of each input matrix

vision.LocalMaximaFinder Find local maxima in matrices

vision.Maximum Find maximum values in input or sequence of
inputs

vision.Mean Find mean value of input or sequence of inputs

vision.Median Find median values in an input

vision.Minimum Find minimum values in input or sequence of
inputs

vision.PSNR Compute peak signal-to-noise ratio (PSNR)
between images

3-15

3 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.StandardDeviation Find standard deviation of input or sequence
of inputs

vision.Variance Find variance values in an input or sequence
of inputs

Text & Graphics

vision.AlphaBlender Combine images, overlay images, or highlight
selected pixels

vision.MarkerInserter Draw markers on output image

vision.ShapeInserter Draw rectangles, lines, polygons, or circles on
images

vision.TextInserter Draw text on image or video stream

Transforms

vision.DCT Compute 2-D discrete cosine transform

vision.FFT Two-dimensional discrete Fourier transform

vision.HoughLines Find Cartesian coordinates of lines that are
described by rho and theta pairs

vision.HoughTransform Find lines in images via Hough transform

vision.IDCT Compute 2-D inverse discrete cosine transform

vision.Pyramid Perform Gaussian pyramid decomposition
Back to Top of Page Back to Top

Utilities

vision.ImagePadder Pad or crop input image along its rows,
columns, or both

3-16

4

Defining MATLAB
Variables for C/C++ Code
Generation

• “Why Define Variables Differently for Code Generation?” on page 4-2

• “Best Practices for Defining Variables for C/C++ Code Generation” on
page 4-3

• “When You Can Reassign Variable Properties for C/C++ Code Generation”
on page 4-7

• “Eliminating Redundant Copies of Variables in Generated Code” on page
4-8

• “Defining and Initializing Persistent Variables” on page 4-10

• “Reusing the Same Variable with Different Properties” on page 4-11

• “Supported Variable Types” on page 4-16

4 Defining MATLAB® Variables for C/C++ Code Generation

Why Define Variables Differently for Code Generation?
In the MATLAB language, variables can change their properties dynamically
at run time so you can use the same variable to hold a value of any class, size,
or complexity. For example, the following code works in MATLAB:

function x = foo(c) %#codegen
coder.extrinsic('disp');
if(c>0)

x = int8(0);
else

x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable
properties at compile time. Therefore, for C/C++ code generation, you must
explicitly define the class, size, and complexity of variables in MATLAB
source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
coder.extrinsic('disp');
x = zeros(1,3);
if(c>0)

x = int8(0);
else

x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++
Code Generation” on page 4-3.

4-2

Best Practices for Defining Variables for C/C++ Code Generation

Best Practices for Defining Variables for C/C++ Code
Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 4-3

“Use Caution When Reassigning Variables” on page 4-6

“Use Type Cast Operators in Variable Definitions” on page 4-6

“Define Matrices Before Assigning Indexed Variables” on page 4-6

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define
the class, size, and complexity of variables before using them in operations or
returning them as outputs. Define variables by assignment, but note that the
assignment copies not only the value, but also the size, class, and complexity
represented by that value to the new variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.

b = a; b with properties of a (real double
scalar).

c = zeros(5,2); c as a real 5-by-2 array of doubles.

d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.

y = int16(3); y as a real 16-bit integer scalar.

Defining properties this way ensures that the variable is defined on all
execution paths during C/C++ code generation (see Example: Defining a
Variable for Multiple Execution Paths on page 4-4).

The data that you assign to a variable can be a scalar, matrix, or structure. If
your variable is a structure, define the properties of each field explicitly (see
Example: Defining All Fields in a Structure on page 4-5).

4-3

4 Defining MATLAB® Variables for C/C++ Code Generation

Initializing the new variable to the value of the assigned data sometimes
results in redundant copies in the generated code. To avoid redundant
copies, you can define variables without initializing their values by using the
coder.nullcopy construct as described in “Eliminating Redundant Copies of
Variables in Generated Code” on page 4-8.

When you define variables, they are local by default; they do not persist
between function calls. To make variables persistent, see “Defining and
Initializing Persistent Variables” on page 4-10.

Example: Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code
works in MATLAB, but generates a compilation error during code generation
because it detects that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

4-4

Best Practices for Defining Variables for C/C++ Code Generation

Example: Defining All Fields in a Structure

Consider the following MATLAB code:

...
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else
clause uses fields a and b. This code works in MATLAB, but generates a
compilation error during C/C++ code generation because it detects a structure
type mismatch. To prevent this error, do not add fields to a structure after
you perform certain operations on the structure. For more information, see
Chapter 6, “Code Generation for MATLAB Structures”.

To make this code suitable for C/C++ code generation, define all fields of
s before using it.

...
% Define all fields in structure s
s = struct(a ,0, b , 0);
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Use s
use(s);
...

4-5

4 Defining MATLAB® Variables for C/C++ Code Generation

Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++
code generation; that is, each variable must have a specific class, size and
complexity. Generally, if you reassign variable properties after the initial
assignment, you get a compilation error during code generation, but there are
exceptions, as described in “When You Can Reassign Variable Properties for
C/C++ Code Generation” on page 4-7.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types,
you can use type cast operators in variable definitions. For example, the
following code defines variable y as an integer:

...
x = 15; % x is of type double by default.
y = uint8(x); % z has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by
writing into an element beyond its current size. Such indexing operations
produce run-time errors. You must define the matrix first before assigning
values to any of its elements.

For example, the following initial assignment is not allowed for code
generation:

g(3,2) = 14.6; % Not allowed for creating g
% OK for assigning value once created

For more information about indexing matrices, see “Limitations on Matrix
Indexing Operations for Code Generation” on page 8-46.

4-6

When You Can Reassign Variable Properties for C/C++ Code Generation

When You Can Reassign Variable Properties for C/C++
Code Generation

There are certain variables that you can reassign after the initial assignment
with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but
different sizes. If the size of the initial assignment is not constant, the
variable is dynamically sized in generated code. For more information, see
“How Working with Variable-Size Data is Different for Code Generation”
on page 8-3.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after
the initial assignment if each occurrence of the variable can have only one
type. In this case, the variable is renamed in the generated code to create
multiple independent variables. For more information, see “Reusing the Same
Variable with Different Properties” on page 4-11.

4-7

4 Defining MATLAB® Variables for C/C++ Code Generation

Eliminating Redundant Copies of Variables in Generated
Code

In this section...

“When Redundant Copies Occur” on page 4-8

“How to Eliminate Redundant Copies by Defining Uninitialized Variables”
on page 4-8

“Defining Uninitialized Variables” on page 4-9

When Redundant Copies Occur
During C/C++ code generation, MATLAB checks for statements that attempt
to access uninitialized memory. If it detects execution paths where a variable
is used but is potentially not defined, it generates a compile-time error. To
prevent these errors, define all variables by assignment before using them in
operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the
assigned data to the new variable, but also initialize the new variable to the
assigned value. This forced initialization sometimes results in redundant
copies in C/C++ code. To eliminate redundant copies, define uninitialized
variables by using the coder.nullcopy function, as described in “How to
Eliminate Redundant Copies by Defining Uninitialized Variables” on page
4-8..

How to Eliminate Redundant Copies by Defining
Uninitialized Variables
1 Define the variable with coder.nullcopy.

2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its
elements before passing the array as an input to a function or operator
— even if the function or operator does not read from the uninitialized
portion of the array.

4-8

Eliminating Redundant Copies of Variables in Generated Code

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing
uninitialized data may lead to segmentation violations or nondeterministic
program behavior (different runs of the same program may yield
inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only
defines X to be a 1-by-5 vector of real doubles, but also initializes each element
of X to zero.

function X = fcn %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

This forced initialization creates an extra copy in the generated code. To
eliminate this overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

4-9

4 Defining MATLAB® Variables for C/C++ Code Generation

Defining and Initializing Persistent Variables
Persistent variables are local to the function in which they are defined,
but they retain their values in memory between calls to the function. To
define persistent variables for C/C++ code generation, use the persistent
statement, as in this example:

persistent PROD_X;

The definition should appear at the top of the function body, after the
header and comments, but before the first use of the variable. During code
generation, the value of the persistent variable is initialized to an empty
matrix by default. You can assign your own value after the definition by using
the isempty statement, as in this example:

function findProduct(inputvalue) %#codegen
persistent PROD_X

if isempty(PROD_X)
PROD_X = 1;

end
PROD_X = PROD_X * inputvalue;
end

For more information, see Persistent Variables in the MATLAB Programming
Fundamentals documentation.

4-10

Reusing the Same Variable with Different Properties

Reusing the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on
page 4-11

“When You Cannot Reuse Variables” on page 4-12

“Limitations of Variable Reuse” on page 4-14

When You Can Reuse the Same Variable with
Different Properties
You can reuse (reassign) an input, output, or local variable with different
class, size, or complexity if MATLAB can unambiguously determine the
properties of each occurrence of this variable during C/C++ code generation.
If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation
report (see “Viewing Variables in Your MATLAB Code” in the MATLAB
Coder documentation.

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the
variable t in an if statement, where it holds a scalar double, then reuses t
outside the if statement to hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t,
see Variable Reuse in an if Statement on page 4-12.

4-11

4 Defining MATLAB® Variables for C/C++ Code Generation

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the
class, size, and complexity of an occurrence of a variable unambiguously
during code generation. In this case, variables cannot be renamed and a
compilation error occurs.

For example, the following example2 function assigns a fixed-point value to
x in the if statement and reuses x to store a matrix of doubles in the else
clause. It then uses x after the if-else statement. This function generates a
compilation error because after the if-else statement, variable x can have
different properties depending on which if-else clause executes.

function y = example2(use_fixpoint, data) %#codegen
if use_fixpoint
% x is fixed-point

x = fi(data, 1, 12, 3);
else

% x is a matrix of doubles
x = data;

end
% When x is reused here, it is not possible to determine its
% class, size, and complexity
t = sum(sum(x));
y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);

4-12

Reusing the Same Variable with Different Properties

y = sum(u(t(2:end-1)));
end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note codegen requires a MATLAB Coder license.

codegen reports that the compilation was successful. It generates a MEX
function, example1x in the current folder, and provides a link to the code
generation report.

3 Open the code generation report.

4 In the MATLAB code pane of the code generation report, place your pointer
over the variable t inside the if statement.

The code generation report highlights both instances of t in the if
statement because they share the same class, size, and complexity. It
displays the data type information for t at this point in the code. Here,
t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the
variable t outside the for-loop.

4-13

4 Defining MATLAB® Variables for C/C++ Code Generation

This time, the report highlights both instances of t outside the if
statement. The report indicates that tmight hold up to 25 doubles. The size
of t is :25, that is, a column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

The report displays a list of all the variables in example1. There are two
uniquely named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if
statement.

8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if
statement.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.

• Global variables.

• Variables passed to C code using coder.ref, coder.rref, coder.wref.

• Variables whose size is set using coder.varsize.

• Variables whose names are controlled using coder.cstructname.

• The index variable of a for-loop when it is used inside the loop body.

4-14

Reusing the Same Variable with Different Properties

• The block outputs of a MATLAB Function block in a Simulink model.

• Chart-owned variables of a MATLAB function in a Stateflow chart.

4-15

4 Defining MATLAB® Variables for C/C++ Code Generation

Supported Variable Types
You can use the following data types for C/C++ code generation from
MATLAB:

Type Description

char Character array (string)

complex Complex data. Cast function takes real and imaginary
components

double Double-precision floating point

int8, int16, int32 Signed integer

logical Boolean true or false

single Single-precision floating point

struct Structure (see Chapter 6, “Code Generation for
MATLAB Structures”)

uint8, uint16,
uint32

Unsigned integer

Fixed-point See “Code Acceleration and Code Generation
from MATLAB for Fixed-Point Algorithms” in the
Fixed-Point Toolbox User’s Guide documentation.

4-16

5

Defining Data for Code
Generation

• “How Working with Data is Different for Code Generation” on page 5-2

• “Code Generation for Complex Data” on page 5-4

• “Code Generation for Characters” on page 5-6

5 Defining Data for Code Generation

How Working with Data is Different for Code Generation
To generate efficient standalone code, you must use the following types and
classes of data differently than you normally would when running your code
in the MATLAB environment:

Data What’s Different More Information

Complex numbers • Complexity of
variables must be set
at time of assignment
and before first use

• Expressions
containing a complex
number or variable
always evaluate to a
complex result, even
if the result is zero

“Code Generation for
Complex Data” on page
5-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Characters” on page 5-6

Enumerated data • Supports
integer-based
enumerated types
only

• Restricted use in
switch statements
and for-loops

Chapter 7, “Code
Generation for
Enumerated Data”

Function handles • Function handles
must be scalar values

• Same bound variable
cannot reference
different function
handles

• Cannot pass function
handles to or from
primary or extrinsic
functions

Chapter 9, “Code
Generation for Function
Handles”

5-2

How Working with Data is Different for Code Generation

Data What’s Different More Information

• Cannot view function
handles from the
debugger

5-3

5 Defining Data for Code Generation

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 5-4

“Expressions Containing Complex Operands Yield Complex Results” on
page 5-5

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of
assignment, either by assigning a complex constant or using the complex
function, as in these examples:

x = 5 + 6i; % x is a complex number by assignment.
y = 7 + 8j; % y is a complex number by assignment.
x = complex(5,6); % x is the complex number 5 + 6i.

Once you set the type and size of a variable, you cannot cast it to another
type or size. In the following example, the variable x is defined as complex
and stays complex:

x = 1 + 2i; % Defines x as a complex variable.
y = int16(x); % Real and imaginary parts of y are int16.
x = 3; % x now has the value 3 + 0i.

Mismatches can also occur when you assign a real operand the complex result
of an operation:

z = 3; % Sets type of z to double (real)
z = 3 + 2i; % ERROR: cannot recast z to complex

As a workaround, set the complexity of the operand to match the result
of the operation:

m = complex(3); % Sets m to complex variable of value 3 + 0i
m = 5 + 6.7i; % Assigns a complex result to a complex number

5-4

Code Generation for Complex Data

Expressions Containing Complex Operands Yield
Complex Results
In general, expressions that contain one or more complex operands always
produce a complex result in generated code, even if the value of the result is
zero. Consider the following example:

x = 2 + 3i;
y = 2 - 3i;
z = x + y; % z is 4 + 0i.

In MATLAB, this code generates the real result z = 4. However, during
code generation, the types for x and y are known, but their values are not.
Because either or both operands in this expression are complex, z is defined
as a complex variable requiring storage for both a real and an imaginary
part. This means that z equals the complex result 4 + 0i in generated code,
not 4 as in MATLAB code.

There are two exceptions to this behavior:

• Functions that take complex arguments, but produce real results

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments, but produce complex results:

z = complex(x,y); % z is a complex number for a real x and y.

5-5

5 Defining Data for Code Generation

Code Generation for Characters
The complete set of Unicode® characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because
many mathematical operations require more than 8 bits of precision, it is
recommended that you do not perform arithmetic with characters if you
intend to generate code from your MATLAB algorithm.

5-6

6

Code Generation for
MATLAB Structures

• “How Working with Structures is Different for Code Generation” on page
6-2

• “Structure Operations Allowed for Code Generation” on page 6-3

• “Defining Scalar Structures for Code Generation” on page 6-4

• “Defining Arrays of Structures for Code Generation” on page 6-7

• “Making Structures Persistent” on page 6-9

• “Indexing Substructures and Fields” on page 6-10

• “Assigning Values to Structures and Fields” on page 6-12

6 Code Generation for MATLAB® Structures

How Working with Structures is Different for Code
Generation

To generate efficient standalone code for structures, you must define and use
structures differently than you normally would when running your code in
the MATLAB environment:

What’s Different More Information

Use a restricted set of operations. “Structure Operations Allowed for
Code Generation” on page 6-3

Observe restrictions on properties
and values of scalar structures.

“Defining Scalar Structures for Code
Generation” on page 6-4

Make structures uniform in arrays. “Defining Arrays of Structures for
Code Generation” on page 6-7

Reference structure fields
individually during indexing.

“Indexing Substructures and Fields”
on page 6-10

Avoid type mismatch when assigning
values to structures and fields.

“Assigning Values to Structures and
Fields” on page 6-12

For an introduction to working with structures in MATLAB, see “Structures”
in the MATLAB Getting Started documentation.

6-2

Structure Operations Allowed for Code Generation

Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are
restricted to the following operations:

• Define structures as local and persistent variables by assignment and
using the struct function

• Index structure fields using dot notation

• Define primary function inputs as structures

• Pass structures to subfunctions

6-3

6 Code Generation for MATLAB® Structures

Defining Scalar Structures for Code Generation

In this section...

“Restrictions When Using struct” on page 6-4

“Restrictions When Defining Scalar Structures by Assignment” on page 6-4

“Adding Fields in Consistent Order on Each Control Flow Path” on page 6-4

“Restriction on Adding New Fields After First Use” on page 6-5

Restrictions When Using struct
When you use the struct function to create scalar structures for code
generation, the following restrictions apply:

• Field arguments must be scalar values.

• You cannot create structures of cell arrays.

Restrictions When Defining Scalar Structures by
Assignment
When you define a scalar structure by assigning a variable to a preexisting
structure, you do not need to define the variable before the assignment.
However, if you already defined that variable, it must have the same class,
size, and complexity as the structure you assign to it. In the following
example, p is defined as a structure that has the same properties as the
predefined structure S:

...
S = struct('a', 0, 'b', 1, 'c', 2);
p = S;
...

Adding Fields in Consistent Order on Each Control
Flow Path
When you create a structure, you must add fields in the same order on each
control flow path. For example, the following code generates a compiler
error because it adds the fields of structure x in a different order in each
if statement clause:

6-4

Defining Scalar Structures for Code Generation

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.b = 30; % Generates an error (on variable x)
x.a = 40;

end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if
statement clause, but the assignments appear in reverse order in the else
clause. Here is the corrected code:

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.a = 40;
x.b = 30;

end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform any of the following
operations on the structure:

• Reading from the structure

• Indexing into the structure array

• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

6-5

6 Code Generation for MATLAB® Structures

In this example, the attempt to add a new field d after reading from structure
x generates an error.

This restriction extends across the structure hierarchy. For example, you
cannot add a field to a structure after operating on one of its fields or nested
structures, as in this example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading
from the structure’s field c generates an error.

6-6

Defining Arrays of Structures for Code Generation

Defining Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 6-7

“Using repmat to Define an Array of Structures with Consistent Field
Properties” on page 6-7

“Defining an Array of Structures Using Concatenation” on page 6-8

Ensuring Consistency of Fields
When you create an array of MATLAB structures with the intent of
generating code, you must be sure that each structure field in the array has
the same size, type, and complexity.

Using repmat to Define an Array of Structures with
Consistent Field Properties
You can create an array of structures from a scalar structure by using the
MATLAB repmat function, which replicates and tiles an existing scalar
structure:

1 Create a scalar structure, as described in “Defining Scalar Structures for
Code Generation” on page 6-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.

3 Assign values to each structure using standard array indexing and
structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures.
Each element of the array is defined by the structure s, which has two fields,
a and b:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;

6-7

6 Code Generation for MATLAB® Structures

X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator,
square brackets ([]), to join one or more structures into an array (see
“Concatenating Matrices” in the MATLAB Mathematics documentation). For
code generation, all the structures that you concatenate must have the same
size, class, and complexity.

For example, the following code uses concatenation and a subfunction to
create the elements of a 1-by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
s.a = a;
s.b = b;

...

6-8

Making Structures Persistent

Making Structures Persistent
To make structures persist, you define them to be persistent variables and
initialize them with the isempty statement, as described in “Defining and
Initializing Persistent Variables” on page 4-10.

For example, the following function defines structure X to be persistent and
initializes its fields a and b:

function f(u) %#codegen
persistent X

if isempty(X)
X.a = 1;
X.b = 2;

end

6-9

6 Code Generation for MATLAB® Structures

Indexing Substructures and Fields
Use these guidelines when indexing substructures and fields for code
generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields
and substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by
resolving symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1

substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure
substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the
array to the structure of interest and then reference that structure’s field
individually using dot notation, as in this example:

...

6-10

Indexing Substructures and Fields

y = X(1).a % Extracts the value of field a
% of the first structure in array X

...

To reference all the values of a particular field for each structure in an array,
use this notation in a for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5

X(i).a = i;
X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each
with two fields a and b as defined by s. See “Defining Arrays of Structures for
Code Generation” on page 6-7 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which
express the field as a variable expression that MATLAB evaluates at run time
(see “Dynamic Field Names” in the MATLAB Getting Started Guide).

6-11

6 Code Generation for MATLAB® Structures

Assigning Values to Structures and Fields
Use these guidelines when assigning values to a structure, substructure,
or field for code generation:

Field properties must be consistent across structure-to-structure
assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a
substructure of a different structure
and vice versa.

Define the structure with the same
number, type, and size of fields as
the substructure.

Assigning an element of one
structure to an element of another
structure.

The elements must have the same
type and size.

Do not use field values as constants

The values stored in the fields of a structure are not treated as constant values
in generated code. Therefore, you cannot use field values to set the size or
class of other data. For example, the following code generates a compiler error:

...
Y.a = 3;
X = zeros(Y.a); % Generates an error

In this example, even though you set field a of structure Y to the value 3, Y.a
is not a constant in generated code and, therefore, it is not a valid argument
to pass to the function zeros.

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to
known types before code generation (see “Working with mxArrays” on page
11-16).

6-12

7

Code Generation for
Enumerated Data

• “How Working with Enumerated Data is Different for Code Generation”
on page 7-2

• “Enumerated Types Supported for Code Generation” on page 7-3

• “When to Use Enumerated Data for Code Generation” on page 7-6

• “Workflows for Using Enumerated Data for Code Generation” on page 7-7

• “How to Define Enumerated Data for Code Generation” on page 7-9

• “How to Instantiate Enumerated Types for Code Generation” on page 7-11

• “How to Generate Code for Enumerated Data” on page 7-12

• “Simple Example: Defining and Using Enumerated Types for Code
Generation” on page 7-13

• “Operations on Enumerated Data Allowed for Code Generation” on page
7-15

• “Using Enumerated Data in Control Flow Statements” on page 7-18

• “Restrictions on Use of Enumerated Data in for-Loops” on page 7-24

• “Toolbox Functions That Support Enumerated Types for Code Generation”
on page 7-25

7 Code Generation for Enumerated Data

How Working with Enumerated Data is Different for Code
Generation

To generate efficient standalone code for enumerated data, you must define
and use enumerated types differently than you normally would when running
your code in the MATLAB environment:

What’s Different More Information

Supports integer-based enumerated
types only

“Enumerated Types Supported for
Code Generation” on page 7-3

Name of each enumerated data type
must be unique

“Naming Enumerated Types for
Code Generation” on page 7-10

Each enumerated data type must
be defined in a separate file on the
MATLAB path

“How to Define Enumerated Data
for Code Generation” on page 7-9
and “How to Generate Code for
Enumerated Data” on page 7-12

Restricted set of operations “Operations on Enumerated Data
Allowed for Code Generation” on
page 7-15

Restricted use in for-loops “Restrictions on Use of Enumerated
Data in for-Loops” on page 7-24

See Also

• “How to Define Enumerated Data for Code Generation” on page 7-9

• “Defining and Organizing Classes” in the MATLAB Object-Oriented
Programming documentation for more information about defining
MATLAB classes

• “Enumerations and Modeling” for more information about enumerated
types based on Simulink.IntEnumType

7-2

Enumerated Types Supported for Code Generation

Enumerated Types Supported for Code Generation

In this section...

“Enumerated Type Based on int32” on page 7-3

“Enumerated Type Based on Simulink.IntEnumType” on page 7-4

Enumerated Type Based on int32
This enumerated data type is based on the built-in type int32. Use this
enumerated type when generating code from MATLAB algorithms.

Syntax

classdef(Enumeration) type_name < int32

Example

classdef(Enumeration) PrimaryColors < int32
enumeration

Red(1),
Blue(2),
Yellow(4)

end
end

In this example, the statement classdef(Enumeration) PrimaryColors
< int32 means that the enumerated type PrimaryColors is based on the
built-in type int32. As such, PrimaryColors inherits the characteristics
of the int32 type, as well as defining its own unique characteristics. For
example, PrimaryColors is restricted to three enumerated values:

Enumerated Value Enumerated Name Underlying Numeric
Value

Red(1) Red 1

Blue(2) Blue 2

Yellow(4) Yellow 4

7-3

7 Code Generation for Enumerated Data

How to Use
Define enumerated data in MATLAB code and compile the source file. For
example, to generate C/C++ code from your MATLAB source, you can use
codegen, as described in “Workflow for Generating Code for Enumerated
Data from MATLAB Algorithms” on page 7-7.

Note codegen requires a MATLAB Coder license.

Enumerated Type Based on Simulink.IntEnumType
This enumerated data type is based on the built-in type
Simulink.IntEnumType, which is available with a Simulink
license. Use this enumerated type when exchanging enumerated data with
Simulink blocks and Stateflow charts.

Syntax

classdef(Enumeration) type_name < Simulink.IntEnumType

Example

classdef(Enumeration) myMode < Simulink.IntEnumType
enumeration

OFF(0)
ON(1)

end
end

How to Use
Here are the basic guidelines for using enumerated data based on
Simulink.IntEnumType:

7-4

Enumerated Types Supported for Code Generation

Application What to Do

When exchanging
enumerated data with
Simulink blocks

Define enumerated data in MATLAB
Function blocks in Simulink models.
Requires Simulink software.

When exchanging
enumerated data with
Stateflow charts

Define enumerated data in MATLAB
functions in Stateflow charts. Requires
Simulink and Stateflow software.

For more information, see:

• “Using Enumerated Data in MATLAB Function Blocks” in the Simulink
documentation

• “Using Enumerated Data in Stateflow Charts” in the Stateflow
documentation

7-5

7 Code Generation for Enumerated Data

When to Use Enumerated Data for Code Generation
You can use enumerated types to represent program states and to control
program logic, especially when you need to restrict data to a finite set of
values and refer to these values by name. Even though you can sometimes
achieve these goals by using integers or strings, enumerated types offer the
following advantages:

• Provide more readable code than integers

• Allow more robust error checking than integers or strings

For example, if you mistype the name of an element in the enumerated
type, you get a compile-time error that the element does not belong to the
set of allowable values.

• Produce more efficient code than strings

For example, comparisons of enumerated values execute faster than
comparisons of strings.

7-6

Workflows for Using Enumerated Data for Code Generation

Workflows for Using Enumerated Data for Code
Generation

In this section...

“Workflow for Generating Code for Enumerated Data from MATLAB
Algorithms” on page 7-7

“Workflow for Generating Code for Enumerated Data from MATLAB
Function Blocks” on page 7-7

Workflow for Generating Code for Enumerated Data
from MATLAB Algorithms
Step Action How?

1
Define an enumerated data type
that inherits from int32.

See “How to Define Enumerated
Data for Code Generation” on
page 7-9.

2
Instantiate the enumerated type
in your MATLAB algorithm.

See “How to Instantiate
Enumerated Types for Code
Generation” on page 7-11.

3
Compile the function with
codegen.

See “How to Generate Code for
Enumerated Data” on page 7-12.

This workflow requires a MATLAB Coder license.

Workflow for Generating Code for Enumerated Data
from MATLAB Function Blocks

Step Action How?

1
Define an enumerated data
type that inherits from
Simulink.IntEnumType.

See “How to Define Enumerated
Data Types for MATLAB
Function Blocks” in the Simulink
documentation.

7-7

7 Code Generation for Enumerated Data

Step Action How?

2
Add the enumerated data to your
MATLAB Function block.

See “How to Add Enumerated
Data to MATLAB Function
Blocks” in the Simulink
documentation.

3
Instantiate the enumerated type
in your MATLAB Function block.

See “How to Instantiate
Enumerated Data in MATLAB
Function Blocks” in the Simulink
documentation.

4
Simulate and/or generate code. See “Enumerated Data Type

Considerations” in the Simulink
Coder documentation.

This workflow requires the following licenses:

• Simulink (for simulation)

• MATLAB Coder and Simulink Coder (for code generation)

7-8

How to Define Enumerated Data for Code Generation

How to Define Enumerated Data for Code Generation
Follow these to define enumerated data for code generation from MATLAB
algorithms:

1 Create a class definition file.

In the MATLAB Command Window, select File > New > Class.

2 Enter the class definition as follows:

classdef(Enumeration) EnumTypeName < int32

For example, the following code defines an enumerated type called sysMode:

classdef(Enumeration) sysMode < int32
...

end

EnumTypeName is a case-sensitive string that must be unique among data
type names and workspace variable names. It must inherit from the
built-in type int32.

3 Define enumerated values in an enumeration section as follows:

classdef(Enumeration) EnumTypeName < int32
enumeration

EnumName(N)
...

end
end

For example, the following code defines a set of two values for enumerated
type sysMode:

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end

end

7-9

7 Code Generation for Enumerated Data

An enumerated type can define any number of values. Each enumerated
value consists of a string EnumName and an underlying integer N. Each
EnumName must be unique within its type, but can also appear in other
enumerated types. The underlying integers need not be either consecutive
or ordered, nor must they be unique within the type or across types.

4 Save the file on the MATLAB path.

The name of the file must match the name of the enumerated data type.
The match is case sensitive.

To add a folder to the MATLAB search path, type addpath pathname
at the MATLAB command prompt. For more information, see “Using
the MATLAB Search Path”, addpath, and savepath in the MATLAB
documentation.

For examples of enumerated data type definitions, see “Class Definition:
sysMode” on page 7-13 and “Class Definition: LEDcolor” on page 7-14.

Naming Enumerated Types for Code Generation
You must use a unique name for each enumerated data type. The name of an
enumerated data type cannot match the name of a toolbox function supported
for code generation, or another data type or a variable in the MATLAB base
workspace. Otherwise, a name conflict occurs.

For example, you cannot name an enumerated data type mode because
MATLAB for code generation provides a toolbox function of the same name.

For a list of toolbox functions supported for code generation, see Chapter 2,
“Functions Supported for Code Generation”.

7-10

How to Instantiate Enumerated Types for Code Generation

How to Instantiate Enumerated Types for Code Generation
To instantiate an enumerated type for code generation from MATLAB
algorithms, use dot notation to specify ClassName.EnumName. For example, the
following function displayState instantiates the enumerated types sysMode
and LEDcolor from “Simple Example: Defining and Using Enumerated Types
for Code Generation” on page 7-13. The dot notation appears highlighted
in the code.

function led = displayState(state)
%#codegen

if state == sysMode.ON
led = LEDcolor.GREEN;

else
led = LEDcolor.RED;

end

7-11

7 Code Generation for Enumerated Data

How to Generate Code for Enumerated Data
Use the command codegen to generate MEX, C, or C++ code from the
MATLAB algorithm that contains the enumerated data (requires a MATLAB
Coder license). Each enumerated data type must be defined on the MATLAB
path in a separate file as a class derived from the built-in type int32. See
“How to Define Enumerated Data for Code Generation” on page 7-9.

If your function has inputs, you must specify the properties of these inputs
to codegen. For an enumerated data input, use the -args option to pass
one of its allowable values as a sample value. For example, the following
codegen command specifies that the function displayState takes one input
of enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

After executing this command, codegen generates a platform-specific MEX
function that you can test in MATLAB. For example, to test displayState,
type the following command:

displayState(sysMode.OFF)

You should get the following result:

ans =

RED

See Also

• MATLAB Coder documentation to learn more about codegen

• “Simple Example: Defining and Using Enumerated Types for Code
Generation” on page 7-13 for a description of the example function
displayState and its enumerated type definitions

7-12

Simple Example: Defining and Using Enumerated Types for Code Generation

Simple Example: Defining and Using Enumerated Types
for Code Generation

In this section...

“About the Example” on page 7-13

“Class Definition: sysMode” on page 7-13

“Class Definition: LEDcolor” on page 7-14

“Function: displayState” on page 7-14

About the Example
The following example appears throughout this section to illustrate how
to define and use enumerated types for code generation. The function,
displayState uses enumerated data to represent the modes of a device that
controls the colors of an LED display.

Before using enumerated data, you must define your enumerated data types
as MATLAB classes that inherit from the built-in type int32. Each class
definition must reside in a separate file on the MATLAB path. This example
uses two enumerated types: sysMode to represent the set of allowable modes
and LEDcolor to represent the set of allowable colors.

See Also

• “Workflows for Using Enumerated Data for Code Generation” on page 7-7

• “How to Define Enumerated Data for Code Generation” on page 7-9

• “How to Instantiate Enumerated Types for Code Generation” on page 7-11

• “How to Generate Code for Enumerated Data” on page 7-12

Class Definition: sysMode
Here is the class definition of the sysMode enumerated data type:

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)

7-13

7 Code Generation for Enumerated Data

ON(1)
end

end

This definition must reside on the MATLAB path in a file with the same
name as the class, sysMode.m.

Class Definition: LEDcolor
Here is the class definition of the LEDcolor enumerated data type:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
end

This definition must reside on the MATLAB path in a file called LEDcolor.m.

Function: displayState
The following function displayState uses enumerated data to activate an
LED display, based on the state of a device. It lights a green LED display to
indicate the ON state and lights a red LED display to indicate the OFF state.

function led = displayState(state)
%#codegen

if state == sysMode.ON
led = LEDcolor.GREEN;

else
led = LEDcolor.RED;

end

This function models a simple control.

The compiler directive %#codegen indicates that you intend to generate
code from the MATLAB algorithm. See “Adding the Compilation Directive
%#codegen” on page 11-8.

7-14

Operations on Enumerated Data Allowed for Code Generation

Operations on Enumerated Data Allowed for Code
Generation

To generate efficient standalone code for enumerated data, you are restricted
to the following operations. The examples are based on the definitions of
the enumeration type LEDcolor described in “Class Definition: LEDcolor”
on page 7-14.

Assignment Operator, =

Example Result

xon = LEDcolor.GREEN
xoff = LEDcolor.RED

xon =

GREEN
xoff =

RED

Relational Operators, < > <= >= == ~=

Example Result

xon == xoff ans =

0

xon <= xoff ans =

1

xon > xoff ans =

0

7-15

7 Code Generation for Enumerated Data

Cast Operation

Example Result

double(LEDcolor.RED) ans =

2

z = 2
y = LEDcolor(z)

z =

2

y =

RED

Indexing Operation

Example Result

m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

m =

1 2

n =

GREEN RED

p =

GREEN

7-16

Operations on Enumerated Data Allowed for Code Generation

Control Flow Statements: if, switch, while

Statement Example Executable
Example

if
if state == sysMode.ON

led = LEDcolor.GREEN;
else

led = LEDcolor.RED;
end

“Using the if
Statement on
Enumerated Data
Types” on page
7-18

switch
switch button

case VCRButton.Stop
state = VCRState.Stop;

case VCRButton.PlayOrPause
state = VCRState.Play;

case VCRButton.Next
state = VCRState.Forward;

case VCRButton.Previous
state = VCRState.Rewind;

otherwise
state = VCRState.Stop;

end

“Using the switch
Statement on
Enumerated Data
Types” on page
7-19

while
while state ~= State.Ready

switch state
case State.Standby

initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

“Using the while
Statement on
Enumerated Data
Types” on page
7-22

7-17

7 Code Generation for Enumerated Data

Using Enumerated Data in Control Flow Statements
The following control statements work with enumerated operands in
generated code. However, there are restrictions (see “Restrictions on Use of
Enumerated Data in for-Loops” on page 7-24).

Using the if Statement on Enumerated Data Types
This example is based on the definition of the enumeration types LEDcolor
and sysMode. The function displayState uses these enumerated data types
to activate an LED display.

Class Definition: sysMode

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, sysMode.m.

Class Definition: LEDcolor

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
end

This definition must reside on the MATLAB path in a file called LEDcolor.m.

MATLAB Function: displayState
This function uses enumerated data to activate an LED display, based on the
state of a device. It lights a green LED display to indicate the ON state and
lights a red LED display to indicate the OFF state.

7-18

Using Enumerated Data in Control Flow Statements

function led = displayState(state)
%#codegen

if state == sysMode.ON
led = LEDcolor.GREEN;

else
led = LEDcolor.RED;

end

Build and Test a MEX Function for displayState

1 Generate a MEX function for displayState. Use the -args option to pass
one of the allowable values for the enumerated data input as a sample
value.

codegen displayState -args {sysMode.ON}

2 Test the function. For example,

displayState(sysMode.OFF)

You should get the following result:

ans =

RED

Using the switch Statement on Enumerated Data
Types
This example is based on the definition of the enumeration types VCRState
and VCRButton. The function VCR uses these enumerated data types to set
the state of the VCR.

Class Definition: VCRState

classdef(Enumeration) VCRState < int32
enumeration

Stop(0),
Pause(1),

7-19

7 Code Generation for Enumerated Data

Play(2),
Forward(3),
Rewind(4)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, VCRState.m.

Class Definition: VCRButton

classdef(Enumeration) VCRButton < int32
enumeration

Stop(1),
PlayOrPause(2),
Next(3),
Previous(4)

end
end

This definition must reside on the MATLAB path in a file with the same name
as the class, VCRButton.m.

MATLAB Function: VCR
This function uses enumerated data to set the state of a VCR, based on the
initial state of the VCR and the state of the VCR button.

function s = VCR(button)
%#codegen

persistent state

if isempty(state)
state = VCRState.Stop;

end

switch state
case {VCRState.Stop, VCRState.Forward, VCRState.Rewind}

state = handleDefault(button);

7-20

Using Enumerated Data in Control Flow Statements

case VCRState.Play
switch button

case VCRButton.PlayOrPause, state = VCRState.Pause;
otherwise, state = handleDefault(button);

end
case VCRState.Pause

switch button
case VCRButton.PlayOrPause, state = VCRState.Play;
otherwise, state = handleDefault(button);

end
end
s = state;

function state = handleDefault(button)
switch button

case VCRButton.Stop, state = VCRState.Stop;
case VCRButton.PlayOrPause, state = VCRState.Play;
case VCRButton.Next, state = VCRState.Forward;
case VCRButton.Previous, state = VCRState.Rewind;
otherwise, state = VCRState.Stop;

end

Build and Test a MEX Function for VCR

1 Generate a MEX function for VCR. Use the -args option to pass one of the
allowable values for the enumerated data input as a sample value.

codegen -args {VCRButton.Stop} VCR

2 Test the function. For example,

s = VCR(VCRButton.Stop)

You should get the following result:

s =

Stop

7-21

7 Code Generation for Enumerated Data

Using the while Statement on Enumerated Data Types
This example is based on the definition of the enumeration type State. The
function Setup uses this enumerated data type to set the state of a device.

Class Definition: State

classdef(Enumeration) State < int32
enumeration

Standby(0),
Boot(1),
Ready(2)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, State.m.

MATLAB Function: Setup
The following function Setup uses enumerated data to set the state of a device.

function s = Setup(initState)
%#codegen

state = initState;

if isempty(state)
state = State.Standby;

end

while state ~= State.Ready
switch state

case State.Standby
initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

7-22

Using Enumerated Data in Control Flow Statements

s = state;

function initialize()
% Perform initialization.

function boot()
% Boot the device.

Build and Test a MEX Executable for Setup

1 Generate a MEX executable for Setup. Use the -args option to pass one of
the allowable values for the enumerated data input as a sample value.

codegen Setup -args {State.Standby}

2 Test the function. For example,

s = Setup(State.Standby)

You should get the following result:

s =

Ready

7-23

7 Code Generation for Enumerated Data

Restrictions on Use of Enumerated Data in for-Loops
Do not use enumerated data as the loop counter variable in for-
loops

To iterate over a range of enumerated data with consecutive values, you can
cast the enumerated data to int32 in the loop counter.

For example, suppose you define an enumerated type ColorCodes as follows:

classdef(Enumeration) ColorCodes < int32
enumeration

Red(1),
Blue(2),
Green(3)
Yellow(4)
Purple(5)

end
end

Because the enumerated values are consecutive, you can use ColorCodes
data in a for-loop like this:

...
for i = int32(ColorCodes.Red):int32(ColorCodes.Purple)

c = ColorCodes(i);
...

end

7-24

Toolbox Functions That Support Enumerated Types for Code Generation

Toolbox Functions That Support Enumerated Types for
Code Generation

The following MATLAB toolbox functions support enumerated types for code
generation:

• cast

• cat

• circshift

• flipdim

• fliplr

• flipud

• histc

• ipermute

• isequal

• isequalwithequalnans

• isfinite

• isinf

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• shiftdim

• sort

• sortrows

7-25

7 Code Generation for Enumerated Data

• squeeze

7-26

8

Code Generation for
Variable-Size Data

• “What Is Variable-Size Data?” on page 8-2

• “How Working with Variable-Size Data is Different for Code Generation”
on page 8-3

• “Bounded Versus Unbounded Variable-Size Data” on page 8-4

• “When to Use Dynamic Allocation for Variable-Size Data” on page 8-5

• “How to Generate Code for MATLAB Functions with Variable-Size Data”
on page 8-6

• “Tutorial: Generating MEX Code for a MATLAB Function That Expands a
Vector in a Loop” on page 8-9

• “Enabling and Disabling Support for Variable-Size Data” on page 8-18

• “Enabling and Disabling Dynamic Memory Allocation for Variable-Size
Data” on page 8-21

• “Variable-Size Data in Code Generation Reports” on page 8-24

• “Defining Variable-Size Data for Code Generation” on page 8-26

• “Specifying Upper Bounds for Variable-Size Data” on page 8-33

• “C Code Interface for Unbounded Arrays and Structure Fields” on page 8-36

• “Troubleshooting Issues with Variable-Size Data” on page 8-39

• “Limitations with Variable-Size Support for Code Generation” on page 8-43

• “Restrictions on Variable Sizing in Toolbox Functions Supported for Code
Generation” on page 8-48

8 Code Generation for Variable-Size Data

What Is Variable-Size Data?
Variable-size data is data whose size can change at run time. By contrast,
fixed-size data is data whose size is known and locked at compile time and,
therefore, cannot change at run time.

For example, in the following MATLAB function nway, B is a variable-size
array; its length is not known at compile time.

function B = nway(A,n)
% Compute average of every N elements of A and put them in B.
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

error('n <= 0 or does not divide number of elements evenly');
end

8-2

How Working with Variable-Size Data is Different for Code Generation

How Working with Variable-Size Data is Different for
Code Generation

In the MATLAB language, all data can vary in size. By contrast, the
semantics of generated code constrains the class, complexity, and shape of
every expression, variable, and structure field. Therefore, for code generation,
you must use each variable consistently. Each variable must:

• Be either complex or real (determined at first assignment)

• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB.
For example, if size(A) == [4 5], the shape of variable A is 4 x 5.
For variable-size data, the shape can be abstract. That is, one or more
dimensions can be unknown (such as 4 x ? or ? x ?).

By default, the compiler detects code logic that attempts to change these fixed
attributes after initial assignments, and flags these occurrences as errors
during code generation. However, you can override this behavior by defining
variables or structure fields as variable-size data. You can then generate
standalone code for bounded and unbounded variable-size data.

See Also

• “Bounded Versus Unbounded Variable-Size Data” on page 8-4

• “Related Products that Support Code Generation from MATLAB” on page
1-12

8-3

8 Code Generation for Variable-Size Data

Bounded Versus Unbounded Variable-Size Data
You can generate code for bounded and unbounded variable-size data.
Bounded variable-size data has fixed upper bounds; this data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds; this data must be allocated on the
heap.

By default during code generation, the compiler allocates memory on the stack
for variable-size data and performs a sophisticated analysis to determine or
calculate upper bounds. If you use unbounded data, you must enable dynamic
memory allocation so the compiler:

• Does not check for upper bounds

• Allocates memory on the heap instead of the stack

There are performance trade-offs between allocating variable-size data on the
heap versus the stack. For guidelines, see “When to Use Dynamic Allocation
for Variable-Size Data” on page 8-5.

8-4

When to Use Dynamic Allocation for Variable-Size Data

When to Use Dynamic Allocation for Variable-Size Data
When you enable dynamic memory allocation, all of your variable-size data
is allocated on the heap, whether bounded or unbounded. For example, you
cannot selectively allocate bounded data on the stack and unbounded data
on the heap. Therefore, follow these guidelines for when to use dynamic
allocation:

If: Then: Rationale

Your code uses
both bounded and
unbounded data

Enable dynamic
memory allocation

Unbounded data
must be dynamically
allocated.

Analysis during code
generation fails to
determine upper
bounds or calculates
upper bounds that are
not precise enough for
your application

Either specify upper
bounds explicitly
or enable dynamic
memory allocation

You cannot use static
memory allocation for
unbounded data.

You use large,
variable-size data sets
whose upper bounds
could grow too large for
the stack

Enable dynamic
memory allocation

Prevent stack overflow.

You use small
variable-size data sets
or data that does not
change size at run time

Disable dynamic
memory allocation

Dynamic memory
allocation is an
expensive operation;
the performance cost
may be too high for
small data sets.

See Also

• “Specifying Upper Bounds for Variable-Size Data” on page 8-33.

8-5

8 Code Generation for Variable-Size Data

How to Generate Code for MATLAB Functions with
Variable-Size Data

Here is a basic workflow that recommends first generating MEX code for
verifying the generated code and then generating standalone code after you
are satisfied with the result of the prototype. Code generation requires a
MATLAB Coder license.

To work through these steps with a simple example, see “Tutorial: Generating
MEX Code for a MATLAB Function That Expands a Vector in a Loop” on
page 8-9

1 In the MATLAB Editor, add the compilation directive %#codegen at the
top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm

• Turns on checking in the MATLAB Code Analyzer to detect potential
errors during code generation

2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code
assigns data a fixed size but later grows the data, such as by assignment
or concatenation in a loop. If that data is supposed to vary in size at run
time, you can ignore these warnings.

3 Generate a MEX function using codegen to verify the generated code
(requires a MATLAB Coder license). Use the following command-line
options:

• -args {coder.typeof...} if you have variable-size inputs

• -report to generate a compilation report

For example:

codegen -report myFcn -args {coder.typeof(0,[2 4])}

8-6

How to Generate Code for MATLAB® Functions with Variable-Size Data

This command uses coder.typeof to specify one variable-size input for
function myFcn. The first argument, 0, indicates the input data type
(double) and complexity (real). The second argument, [2 4], indicates the
size, a matrix with two variable-size dimensions. The upper bound is 2 for
the first dimension and 4 for the second dimension.

Note During compilation, codegen detects variables and structure fields
that change size after you define them, and reports these occurrences as
errors. In addition, codegen performs a run-time check to generate errors
when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More
Information:

You try to change the
size of data after its
size has been locked.

Define the data to be
variable sized.

See “Diagnosing and
Fixing Size Mismatch
Errors” on page 8-39

5 Fix upper bounds errors

Cause: How To Fix: For More
Information:

MATLAB cannot
determine or
compute the upper
bound

Specify an upper
bound.

See “Specifying
Upper Bounds for
Variable-Size Data”
on page 8-33 and
“Diagnosing and Fixing
Errors in Detecting
Upper Bounds” on page
8-41

MATLAB attempts
to compute an upper
bound for unbounded
variable-size data.

If the data is
unbounded, enable
dynamic memory
allocation.

See “Enabling and
Disabling Dynamic
Memory Allocation for
Variable-Size Data” on
page 8-21

8-7

8 Code Generation for Variable-Size Data

6 Generate C/C++ code using the codegen function (requires a MATLAB
Coder license).

8-8

Tutorial: Generating MEX Code for a MATLAB® Function That Expands a Vector in a Loop

Tutorial: Generating MEX Code for a MATLAB Function
That Expands a Vector in a Loop

In this section...

“About the MATLAB Function emldemo_uniquetol” on page 8-9

“Step 1: Add Compilation Directive for Code Generation” on page 8-10

“Step 2: Address Issues Detected by the Code Analyzer” on page 8-10

“Step 3: Generate MEX Code” on page 8-10

“Step 4: Fix the Size Mismatch Error” on page 8-12

“Step 5: Fix the Upper Bounds Error” on page 8-14

“Step 6: Generate C/C++ Code” on page 8-16

About the MATLAB Function emldemo_uniquetol
This tutorial uses the function emldemo_uniquetol. This function returns
in vector B a version of input vector A, where the elements are unique to
within tolerance tol of each other. In vector B, abs(B(i) - B(j)) > tol for all
i and j. Initially, assume input vector A can store up to 100 elements. In a
later exercise, you will enable dynamic memory allocation for an unbounded
input vector.

function B = emldemo_uniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Work Through the Tutorial or Use the Supplied Solution
To work through the tutorial, start at “Step 1: Add Compilation Directive for
Code Generation” on page 8-10. To open the supplied solution:

8-9

8 Code Generation for Variable-Size Data

1 Change to the matlabroot/toolbox/stateflow/sfdemos folder:

cd ([matlabroot, '/toolbox/stateflow/sfdemos'])

2 Open emldemo_uniquetol.m.

Step 1: Add Compilation Directive for Code
Generation
Add the %#codegen compilation directive at the top of the function:

function B = emldemo_uniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 2: Address Issues Detected by the Code
Analyzer
The Code Analyzer detects that variable B might change size in the for-loop.
It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A.
Therefore, you can ignore this warning.

Step 3: Generate MEX Code
To generate MEX code, use the codegen function (requires a MATLAB Coder
license).

1 Generate a MEX function for emldemo_uniquetol:

codegen emldemo_uniquetol -args {coder.typeof(0,[1 100]),0} -report

8-10

Tutorial: Generating MEX Code for a MATLAB® Function That Expands a Vector in a Loop

What do these command-line options mean?

The -args option specifies the class, complexity, and size of each input to
function emldemo_uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The
expression coder.typeof(0,[1 100]) defines input A as a real double
vector with a fixed upper bound. Its first dimension is fixed at 1 and its
second dimension can vary in size up to 100 elements.

For more information, see “Specifying Variable-Size Inputs at the
Command Line” in the MATLAB Coder documentation.

• The second argument, 0, defines input tol as a real double scalar.

The -report option instructs codegen to generate a compilation report,
even if no errors or warnings occur.

For more information, see the codegen reference page in the MATLAB
Coder documentation.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).
The size to the left is the size
of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

8-11

8 Code Generation for Variable-Size Data

The error indicates a size mismatch between the left-hand side and right-hand
side of the assignment statement B = [B A(i)];. The assignment B =
A(1) establishes the size of B as a fixed-size scalar (1 x 1). Therefore, the
concatenation of [B A(i)] creates a 1 x 2 vector.

Step 4: Fix the Size Mismatch Error
To fix this error, define B to be a variable-size vector.

1 Add this statement to the emldemo_uniquetol function:

coder.varsize('B');

It should appear before B is used (read). For example:

function B = emldemo_uniquetol(A, tol) %#codegen
A = sort(A);

8-12

Tutorial: Generating MEX Code for a MATLAB® Function That Expands a Vector in a Loop

coder.varsize(B);

B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

The function coder.varsize defines every instance of B in
emldemo_uniquetol to be variable sized.

2 Generate another compilation report using this command:

codegen emldemo_uniquetol -args {coder.typeof(0,[1 100]),0} -report

This time, the command generates a different compiler error:

??? Computed maximum size is not bounded.
Static memory allocation requires all sizes to be bounded.
The computed size is [1 x :?].
This error may be reported due to a limitation
of the underlying analysis. Please consider enabling
dynamic memory allocation to allow unbounded sizes.

3 Open the error report and select the Variables tab.

8-13

8 Code Generation for Variable-Size Data

This error occurs because codegen cannot determine an upper bound for B .

Step 5: Fix the Upper Bounds Error
There are two ways to fix this error:

• “Specify Upper Bounds for Variable B” on page 8-14

• “Enable Dynamic Memory Allocation for an Unbounded Variable B” on
page 8-15

Specify Upper Bounds for Variable B
Choose this method if you want to enforce an upper bound for B. In this
exercise, you constrain B to the same upper bound as A.

1 Add a second argument to coder.varsize:

coder.varsize('B', [1 100]);

8-14

Tutorial: Generating MEX Code for a MATLAB® Function That Expands a Vector in a Loop

The argument [1 100] specifies that B is a vector with its first dimension
fixed at size 1 and the second dimension variable to an upper bound of
100. The value of 100 matches the upper bound of variable-size vector A.
Based on the algorithm, output B is at most as large as input A. By default,
dimensions of 1 are fixed size.

Here is the modified code:

function B = emldemo_uniquetol(A, tol) %#codegen
A = sort(A);

coder.varsize(B , [1 100]);

B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

2 Compile the function again:

codegen emldemo_uniquetol -args {coder.typeof(0,[1 100]),0} -report

codegen should compile without error and generate a MEX function for
emldemo_uniquetol.

This exercise presents one way to specify an upper bound. To learn about other
methods, see “Specifying Upper Bounds for Variable-Size Data” on page 8-33

Enable Dynamic Memory Allocation for an Unbounded
Variable B
Choose this method if you do not know the upper bound for B or do not need
to enforce an upper bound. In this exercise, you will also remove the upper
bound for input A.

1 Enable the DynamicMemoryAllocation configuration option for MEX code
generation:

8-15

8 Code Generation for Variable-Size Data

cfg = coder.config;
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

2 Compile the function again, adding a -config argument:

codegen emldemo_uniquetol -args {coder.typeof(0,[1
100]),0} -report -config cfg

Adding -config cfg applies the configuration setting that enables
dynamic memory allocation.

codegen should compile without error and generate a MEX function for
emldemo_uniquetol.

3 Specify the second dimension of input A as unbounded:

codegen -config cfg -report emldemo_uniquetol -args
{coder.typeof(0,[1 Inf]),0}

If you do not know the upper bounds of an input, it is good coding practice
to specify the input as unbounded instead of giving it an arbitrary upper
bound. In this codegen command, the size of the second dimension of
input A is Inf. When you specify the size of a dimension as Inf in a
coder.typeof statement, codegen treats the dimension as unbounded.
You can use Inf only with dynamic allocation.

See Also
• codegen in the MATLAB Coder documentation.

• “Primary Function Input Specification”in the MATLAB Coder
documentation.

Step 6: Generate C/C++ Code
If you have a MATLAB Coder license, you can generate C/C++ code for
variable-size data in the example function. For example, to generate a
C library for unbounded data in the emldemo_uniquetol function using
dynamic memory allocation:

8-16

Tutorial: Generating MEX Code for a MATLAB® Function That Expands a Vector in a Loop

1 Enable the DynamicMemoryAllocation configuration option for C library
generation:

cfg=coder.config(`lib');
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

2 Issue this command:

codegen -config cfg -report emldemo_uniquetol -args {coder.typeof(0,[1

In the generated code, MATLAB represents data with unknown upper bounds
as a data type called emxArray. MATLAB provides utility functions for
creating and interacting with emxArrays in your generated code.

See Also

• “C Code Interface for Unbounded Arrays and Structure Fields” on page 8-36

• codegen in the MATLAB Coder documentation.

8-17

8 Code Generation for Variable-Size Data

Enabling and Disabling Support for Variable-Size Data

In this section...

“Enabled by Default” on page 8-18

“Controlling Variable-Size Support for Different Code Generation Targets”
on page 8-18

Enabled by Default
Support for variable-size data is a configuration parameter. It is enabled by
default for MEX and C/C++ code generation.

Controlling Variable-Size Support for Different Code
Generation Targets

1 Define a compiler configuration object in the MATLAB workspace for the
desired target. For example:

For: Define: Requires:

Generating MEX code cfg = coder.config
or
cfg =
coder.config('mex')

MATLAB Coder
license.

Generating standalone
C/C++ libraries

cfg =
coder.config('lib')
or
cfg =

MATLAB Coder
license.

8-18

Enabling and Disabling Support for Variable-Size Data

For: Define: Requires:

coder.config('lib',
'ecoder', false)

Note If an Embedded
Coder license is
also available,
creates configuration
parameters for
embedded targets by
default. In this case,
to create configuration
parameters for
non-embedded
targets, use
coder.config('lib',
'ecoder', false) .

Generating standalone
C/C++ libraries for
embedded targets

cfg =
coder.config('lib')

MATLAB Coder and
Embedded Coder
license.

Generating standalone
C/C++ executables

cfg =
coder.config('exe')
cfg =
coder.config('exe',
'ecoder', false)

MATLAB Coder
license.

Note If an Embedded
Coder license is
also available,
creates configuration
parameters for
embedded targets by
default. In this case,
to create configuration
parameters for
non-embedded
targets, use
coder.config('exe',
'ecoder', false) .

8-19

8 Code Generation for Variable-Size Data

For: Define: Requires:

Generating standalone
C/C++ executables for
embedded targets

cfg =
coder.config('exe')

MATLAB Coder and
Embedded Coder
license.

‘

2 Modify the variable sizing parameter.

• To disable variable sizing:

cfg.EnableVariableSizing = false

• To enable variable sizing:

cfg.EnableVariableSizing = true

You can also modify this parameter by using dialog boxes. See “Specifying
Build Configuration Parameters at the Command Line Using Dialog Boxes”
in the MATLAB Coder documentation.

3 Invoke codegen with the -config option and specify the configuration
object as its argument. For example:

codegen -config cfg myMfile

For details about this command and its options, see the codegen reference
page in the MATLAB Coder documentation.

8-20

Enabling and Disabling Dynamic Memory Allocation for Variable-Size Data

Enabling and Disabling Dynamic Memory Allocation for
Variable-Size Data

1 Enable support for variable sizing (see “Enabling and Disabling Support
for Variable-Size Data” on page 8-18).

2 Define a compiler configuration object with the option
DynamicMemoryAllocation:

For: Define: Requires:

Generating MEX code cfg = coder.config
or
cfg =
coder.config('mex')

MATLAB Coder
license.

Generating standalone
C/C++ libraries

cfg =
coder.config('lib')
or
cfg =
coder.config('lib',
'ecoder', false)

MATLAB Coder
license.

Note If an Embedded
Coder license is
also available,
creates configuration
parameters for
embedded targets by
default. In this case,
to create configuration
parameters for
non-embedded
targets, use
coder.config('lib',
'ecoder', false) .

Generating standalone
C/C++ libraries for
embedded targets

cfg =
coder.config('lib')

MATLAB Coder and
Embedded Coder
license.

8-21

8 Code Generation for Variable-Size Data

For: Define: Requires:

Generating standalone
C/C++ executables

cfg =
coder.config('exe')
cfg =
coder.config('exe',
'ecoder', false)

MATLAB Coder
license.

Note If an Embedded
Coder license is
also available,
creates configuration
parameters for
embedded targets by
default. In this case,
to create configuration
parameters for
non-embedded
targets, use
coder.config('exe',
'ecoder', false) .

Generating standalone
C/C++ executables for
embedded targets

cfg =
coder.config('exe')

MATLAB Coder and
Embedded Coder
license.

3 Modify the dynamic memory allocation parameter:

• To enable dynamic memory allocation:

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays'

• To disable dynamic memory allocation:

cfg.DynamicMemoryAllocation = 'Off'

4 Compile your function, adding a -config argument to apply the
configuration setting:

codegen -config cfg -report emldemo_uniquetol -args
{coder.typeof(0,[1 100]),0}

8-22

Enabling and Disabling Dynamic Memory Allocation for Variable-Size Data

Adding -config cfg applies the configuration setting that enables
dynamic memory allocation.

8-23

8 Code Generation for Variable-Size Data

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 8-24

“How Size Appears in Code Generation Reports” on page 8-25

“How to Generate a Code Generation Report” on page 8-25

What Reports Tell You About Size
Code generation reports:

• Differentiate fixed-size from variable-size data

• Identify variable-size data with unknown upper bounds

• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but
the size of its dimensions does not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

8-24

Variable-Size Data in Code Generation Reports

How Size Appears in Code Generation Reports

��������	
�	��������������������������������
�	��������	����������	������������

How to Generate a Code Generation Report
Add the -report option to your codegen command (requires a MATLAB
Coder license).

8-25

8 Code Generation for Variable-Size Data

Defining Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 8-26

“Using a Matrix Constructor with Nonconstant Dimensions” on page 8-27

“Inferring Variable Size from Multiple Assignments” on page 8-27

“Defining Variable-Size Data Explicitly Using coder.varsize” on page 8-29

When to Define Variable-Size Data Explicitly
For code generation, you must assign variables to have a specific class,
size, and complexity before using them in operations or returning them as
outputs. Generally, you cannot reassign variable properties after the initial
assignment. Therefore, attempts to grow a variable or structure field after
assigning it a fixed size might cause a compilation error. In these cases, you
must explicitly define the data as variable sized using one of these methods:

Method See

Assign the data from a variable-size
matrix constructor such as
• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page
8-27

Assign multiple, constant sizes
to the same variable before using
(reading) the variable.

“Inferring Variable Size from
Multiple Assignments” on page 8-27

Define all instances of a variable to
be variable sized

“Defining Variable-Size Data
Explicitly Using coder.varsize” on
page 8-29

8-26

Defining Variable-Size Data for Code Generation

Using a Matrix Constructor with Nonconstant
Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

If you are not using dynamic memory allocation, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

Inferring Variable Size from Multiple Assignments
You can define variable-size data by assigning multiple, constant sizes to the
same variable before you use (read) the variable in your code. When MATLAB
uses static allocation on the stack for code generation, it infers the upper
bounds from the largest size specified for each dimension. When you assign
the same size to a given dimension across all assignments, MATLAB assumes
that the dimension is fixed at that size. The assignments can specify different
shapes as well as sizes.

When you enable dynamic memory allocation on the heap, MATLAB does not
check for upper bounds; it assumes all variable-size data is unbounded.

Example: Inferring Upper Bounds from Multiple Definitions
with Different Shapes

function y = var_by_multiassign(u) %#codegen

8-27

8 Code Generation for Variable-Size Data

if (u > 0)
y = ones(3,4,5);

else
y = zeros(3,1);

end

When static allocation is used, this function infers that y is a matrix with
three dimensions, where:

• First dimension is fixed at size 3

• Second dimension is variable with an upper bound of 4

• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

When dynamic allocation is used, the function analyzes the dimensions of
y differently:

• First dimension is fixed at size 3

• Second and third dimensions are unbounded

In this case, the code generation report represents the size of matrix y like
this:

8-28

Defining Variable-Size Data for Code Generation

Defining Variable-Size Data Explicitly Using
coder.varsize
Use the function coder.varsize to define one or more variables or structure
fields as variable-size data. Optionally, you can also specify which dimensions
vary along with their upper bounds (see “Specifying Which Dimensions Vary”
on page 8-29). For example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an
upper bound of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all
dimensions of B can vary and that the upper bound is size(B).

For more information, see the coder.varsize reference page.

Specifying Which Dimensions Vary
You can use the function coder.varsize to specify which dimensions vary.
For example, the following statement defines B as a row vector whose first
dimension is fixed at 2, but whose second dimension can grow to an upper
bound of 16:

coder.varsize('B', [2, 16], [0 1])

The third argument specifies which dimensions vary. This argument must be
a logical vector or a double vector containing only zeros and ones. Dimensions
that correspond to zeros or false have fixed size; dimensions that correspond
to ones or true vary in size. coder.varsize usually treats dimensions of size
1 as fixed (see “Defining Variable-Size Matrices with Singleton Dimensions”
on page 8-30).

For more information about the syntax, see the coder.varsize reference
page.

8-29

8 Code Generation for Variable-Size Data

Allowing a Variable to Grow After Defining Fixed Dimensions
Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first
use (where the statement Y = Y + u reads from Y). However, coder.varsize
defines Y as a variable-size matrix, allowing it to change size based on decision
logic in the else clause:

function Y = var_by_if(u) %#codegen
if (u > 0)

Y = zeros(2,2);
coder.varsize('Y');
if (u < 10)

Y = Y + u;
end

else
Y = zeros(5,5);

end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix
and generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions
A singleton dimension is any dimension for which size(A,dim) = 1. Singleton
dimensions are fixed in size when:

• You specify a dimension with an upper bound of 1 in coder.varsize
expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y 3];
else

Y = [Y u];
end

8-30

Defining Variable-Size Data for Code Generation

• You initialize variable-size data with singleton dimensions using matrix
constructor expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only
their second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)

Y = [Y u];
else

X = [X u];
end

You can override this behavior by using coder.varsize to specify explicitly
that singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

In this example, the third argument of coder.varsize is a vector of ones,
indicating that each dimension of Y varies in size. For more information, see
the coder.varsize reference page.

Defining Variable-Size Structure Fields
To define structure fields as variable-size arrays, use colon (:) as the index
expression. The colon (:) indicates that all elements of the array are variable
sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);

8-31

8 Code Generation for Variable-Size Data

data = repmat(d, [3 3]);
coder.varsize(data(:).values);

for i = 1:numel(data)
data(i).color = rand-0.5;
data(i).values = 1:i;

end

y = 0;
for i = 1:numel(data)

if data(i).color > 0
y = y + sum(data(i).values);

end;
end

The expression coder.varsize('data(:).values') defines the field values
inside each element of matrix data to be variable sized.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each
element of matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each
element of matrix data to be variable sized.

8-32

Specifying Upper Bounds for Variable-Size Data

Specifying Upper Bounds for Variable-Size Data

In this section...

“When to Specify Upper Bounds for Variable-Size Data” on page 8-33

“Specifying Upper Bounds on the Command Line for Variable-Size Inputs ”
on page 8-33

“Specifying Unknown Upper Bounds for Variable-Size Inputs” on page 8-33

“Specifying Upper Bounds for Local Variable-Size Data” on page 8-34

When to Specify Upper Bounds for Variable-Size
Data
When using static allocation on the stack during code generation, MATLAB
must be able to determine upper bounds for variable-size data. Specify the
upper bounds explicitly for variable-size data from external sources, such
as inputs and outputs.

Specifying Upper Bounds on the Command Line for
Variable-Size Inputs
Use the coder.typeof construct with the -args option on the codegen
command line (requires a MATLAB Coder license). For example:

codegen foo -args {coder.typeof(double(0),[3 100])}

This command specifies that the input to function foo is a matrix of real
doubles with two variable dimensions. The upper bound for the first
dimension is 3; the upper bound for the second dimension is 100. For a
detailed explanation of this syntax, see coder.typeof in the MATLAB Coder
documentation.

Specifying Unknown Upper Bounds for Variable-Size
Inputs
If you use dynamic memory allocation, you can specify that you don’t know
the upper bounds of inputs. To specify an unknown upper bound, use the
infinity constant Inf in place of a numeric value. For example:

8-33

8 Code Generation for Variable-Size Data

codegen foo -args {coder.typeof(double(0), [1 Inf])}

In this example, the input to function foo is a vector of real doubles without
an upper bound.

Specifying Upper Bounds for Local Variable-Size Data
When using static allocation, MATLAB uses a sophisticated analysis to
calculate the upper bounds of local data at compile time. However, when the
analysis fails to detect an upper bound or calculates an upper bound that is
not precise enough for your application, you need to specify upper bounds
explicitly for local variables.

You do not need to specify upper bounds when using dynamic allocation on
the heap. In this case, MATLAB assumes all variable-size data is unbounded
and does not attempt to determine upper bounds.

• “Constraining the Value of a Variable That Specifies Dimensions of
Variable-Size Data” on page 8-34

• “Specifying the Upper Bounds for All Instances of a Local Variable” on
page 8-35

Constraining the Value of a Variable That Specifies Dimensions
of Variable-Size Data
Use the assert function with relational operators to constrain the value of
variables that specify the dimensions of variable-size data. For example:

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

This assert statement constrains input n to a maximum size of 5, defining L
and M as variable-sized matrices with upper bounds of 5 for each dimension.

8-34

Specifying Upper Bounds for Variable-Size Data

Specifying the Upper Bounds for All Instances of a Local
Variable
Use the coder.varsize function to specify the upper bounds for all instances
of a local variable in a function. For example:

function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each
instance of the variable specified in the first argument. In this example, the
argument [1 10] indicates that for every instance of Y:

• First dimension is fixed at size 1

• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsize reference page.

8-35

8 Code Generation for Variable-Size Data

C Code Interface for Unbounded Arrays and Structure
Fields

In this section...

“emxArray: Representation of Data with Unknown Upper Bounds” on page
8-36

“Utility Functions for Creating emxArray Data Structures” on page 8-37

emxArray: Representation of Data with Unknown
Upper Bounds
In generated code, MATLAB represents data with unknown upper bounds
as a structure type called emxArray. An embeddable version of the MATLAB
mxArray, the emxArray is a family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypeName>
{

<baseTypeName> *data;
int32_T *size;
int32_T allocated;
int32_T numDimensions;
boolean_T canFreeData;

} emxArray_<baseTypeName>;

For example, here’s the definition for an emxArray of base type real_T with
unknown upper bounds:

typedef struct emxArray_real_T
{

real_T *data;
int32_T *size;
int32_T allocated;
int32_T numDimensions;
boolean_T canFreeData;

} emxArray_real_T;

8-36

C Code Interface for Unbounded Arrays and Structure Fields

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

emxArray Structure Fields

Field Description

*data Pointer to data of type <baseTypeName>

*size Pointer to first element of size vector. Length
of the vector equals the number of dimensions.

allocatedSize Number of elements currently allocated for the
array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that
is, the number of dimensions you can access
without crossing into unallocated or unused
memory

canFreeData Boolean flag indicating how to deallocate
memory:
• true – MATLAB deallocates memory
automatically

• false – Calling program determines when
to deallocate memory

Utility Functions for Creating emxArray Data
Structures
To create and interact with emxArrays in your generated code, MATLAB
provides a set of utility functions, along with a header file. To call these
functions in your main C function, include the generated header file.

8-37

8 Code Generation for Variable-Size Data

Function Arguments Description

emxArray_<baseTypeName>
*emxCreateWrapper_<baseTypeName>
(...)

*data
num_rows
num_cols

Creates a new
2-dimensional
emxArray, but does not
allocate it on the heap.
Instead uses memory
provided by the user
and sets canFreeData
to false so it never
inadvertently free user
memory, such as the
stack.

emxArray_<baseTypeName>
*emxCreateWrapperND_<baseTypeName>
(...)

*data
numDimensions
*size

Same as
emxCreateWrapper,
except it creates a
new N-dimensional
emxArray.

emxArray_<baseTypeName>
*emxCreate_<baseTypeName> (...)

num_rows
num_cols

Creates a new
two-dimensional
emxArray on the heap,
initialized to zero. All
data elements have the
data type specified by
baseTypeName. .

emxArray_<baseTypeName>
*emxCreateND_<baseTypeName> (...)

numDimensions
*size

Same as emxCreate,
except it creates a
new N-dimensional
emxArray on the heap.

emxArray_<baseTypeName>
*emxDestroyArray_<baseTypeName>
(...)

*emxArray Frees dynamic
memory allocated
and by *emxCreate
*emxCreateND
functions.

8-38

Troubleshooting Issues with Variable-Size Data

Troubleshooting Issues with Variable-Size Data

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 8-39

“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 8-41

Diagnosing and Fixing Size Mismatch Errors
Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated
code. Consider this example:

function Y = example_mismatch1(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize(A);
assert(n<10);
B = ones(n,n);
A = magic(3);

8-39

8 Code Generation for Variable-Size Data

A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert
statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n==3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B(1:3, 1:3);
end
Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might
silently reshape the data in generated code to match a coder.varsize
specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize(`Y', [1 10]);

8-40

Troubleshooting Issues with Variable-Size Data

If u < 0
Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10
elements, so its first dimension is fixed at size 1. The statement Y = []
designates the first dimension of Y as 0, creating a mismatch. The right
hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y =
[] in generated code to Y = zeros(1,0) so it matches the coder.varsize
specification.

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes.
Operands have different sizes if one has fixed dimensions and the other has
variable dimensions. For example:

function z = mismatch_operands(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x + y;

When you compile this function, you get an error because y has fixed
dimensions (3 x 3), but x has variable dimensions. Fix this problem by using
explicit indexing to make x the same size as y:

function z = mismatch_operands_fix(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper
Bounds
Check your code for these issues:

8-41

8 Code Generation for Variable-Size Data

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with
nonconstant dimensions. For example:

function y = dims_vary(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

However, compiling this function generates an error because you did not
specify an upper bound for u. There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation,
MATLAB does not check for upper bounds when it uses dynamic memory
allocation for variable-size data.

• If you do not want to use dynamic memory allocation, add an assert
statement before the first use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

8-42

Limitations with Variable-Size Support for Code Generation

Limitations with Variable-Size Support for Code
Generation

In this section...

“Limitation on Scalar Expansion” on page 8-43

“Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays” on page 8-44

“Limitation on Vector-Vector Indexing” on page 8-45

“Limitations on Matrix Indexing Operations for Code Generation” on page
8-46

“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks”
on page 8-47

“Limitation on Mixing Stack and Heap Allocation” on page 8-47

Limitation on Scalar Expansion
Scalar expansion is a method of converting scalar data to match the
dimensions of vector or matrix data. During code generation, the standard
MATLAB scalar expansion rules apply except when adding two variable-size
expressions. In this case, both operands must be the same size. MATLAB
does not perform scalar expansion even if one of the variable-size expressions
is scalar. Instead, it generates a size mismatch error at run time.

For example, the following code applies the standard MATLAB scalar
expansion rules:

function y = scalar_exp_test()%#codegen
A = zeros(2,2);
coder.varsize('A');
B = 1;
y = A + B;

It determines that B is scalar and adds it to the variable-size matrix A to
produce this result:

ans =

8-43

8 Code Generation for Variable-Size Data

1 1
1 1

However, suppose B is also variable sized:

function y = scalar_exp_test_err1()%#codegen
A = zeros(2,2);
coder.varsize('A','B');
B = 1;
y = A + B;

In this case, the coder.varsize statement obscures the fact that B is scalar.
The function compiles without error, but generates a run-time error:

??? Sizes mismatch: [2][2] ~= [1][1]

Workaround
To fix the problem, use indexing to force B to be a scalar value:

function y = scalar_exp_test_fix()%#codegen
A = zeros(2,2);
coder.varsize('A','B');
B = 1;
y = A + B(1);

Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays
For variable-size N-D arrays, the size function can return a different result in
generated code than in MATLAB. In generated code, size(A) always returns
a fixed-length output because it does not drop trailing singleton dimensions
of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A)
returns:

• Three-element vector in generated code

• Two-element vector in MATLAB code

8-44

Limitations with Variable-Size Support for Code Generation

Workarounds
If your application requires generated code to return the same size of
variable-size N-D arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) always returns the same answer in generated code
and MATLAB code.

• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot
pass a variable-size X to matrix constructors such as zeros that require a
fixed-size argument.

Limitation on Vector-Vector Indexing
In vector-vector indexing, you use one vector as an index into another vector.
When either vector is variable sized, you might get a run-time error during
code generation. Consider the index expression A(B). The general rule for
indexing is that size(A(B)) == size(B). However, when both A and B are
vectors, MATLAB applies a special rule: use the orientation of A as the
orientation of the output. For example, if size(A) == [1 5] and size(B) ==
[3 1], then size(A(B)) == [1 3].

In this situation, if MATLAB detects that both A and B are vectors at compile
time, it applies the special rule and gives the same result as MATLAB.
However, if either A or B is a variable-size matrix (has shape ?x?) at compile
time, MATLAB applies only the general indexing rule. Then, if both A and B
become vectors at run time, MATLAB reports a run-time error in simulation.

Workaround
Force your data to be a vector by using the colon operator for indexing:
A(B(:)). For example, suppose your code intentionally toggles between
vectors and regular matrices at run time. You can do an explicit check to
provide deterministic behavior:

...

8-45

8 Code Generation for Variable-Size Data

if isvector(A) && isvector(B)
C = A(:);
D = C(B(:));

else
D = A(B);

end
...

The indexing in the first branch specifies that C and B(:) are compile-time
vectors. As a result, MATLAB applies the standard vector-vector indexing
rule during code generation.

Limitations on Matrix Indexing Operations for Code
Generation
The following limitations apply to matrix indexing operations for code
generation:

• M(i:j) where i and j change in a loop

During code generation, memory is never dynamically allocated for the size
of the expressions that change as the program executes. To implement this
behavior, use for loops as shown in the following example:

...
M = ones(10,10);
for i=1:10
for j = i:10
M(i,j) = 2 * M(i,j);

end
end
...

Note The matrix M must be defined before entering the loop, as shown in
the highlighted code.

• M(i:i+k) where i is unknown but k is known

8-46

Limitations with Variable-Size Support for Code Generation

In this case, since i— and therefore i+k— are not known, memory cannot
be allocated for the numerical result. However, memory can be allocated
for the following workaround:

M(i + (0:k))

In this case, an unknown scalar value i is added to each element of the
known index vector 0...k. This means that memory for k+1 elements
of M is allocated.

• Initialization of the following style:

for i = 1:10
M(i) = 5;

end

In this case, the size of M changes as the loop is executed.

Dynamic Memory Allocation Not Supported for
MATLAB Function Blocks
You cannot use dynamic memory allocation for variable-size data in MATLAB
Function blocks. Use bounded instead of unbounded variable-size data.

Limitation on Mixing Stack and Heap Allocation
When you enable dynamic memory allocation, all of your variable-size data
is allocated on the heap, whether bounded or unbounded. For example, you
cannot selectively allocate bounded data on the stack and unbounded data
on the heap.

8-47

8 Code Generation for Variable-Size Data

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation

In this section...

“Common Restrictions” on page 8-48

“Toolbox Functions with Variable Sizing Restrictions” on page 8-49

Common Restrictions
The following common restrictions apply to multiple toolbox functions
supported for code generation. To determine which of these restrictions apply
to specific library functions, see the table in “Toolbox Functions with Variable
Sizing Restrictions” on page 8-49.

Variable-length vector restriction
Inputs to the library function must be variable-length vectors or fixed-size
vectors. A variable-length vector is a variable-size array that has the shape
1x:n or :nx1 (one dimension is variable sized and the other is fixed at size 1).
Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction
When the function selects the working dimension automatically, it bases the
selection on the upper bounds for the dimension sizes. In the case of the sum
function, sum(X) selects its working dimension automatically, while sum(X,
dim) uses dim as the explicit working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x)
behaves like sum(X,2) in generated code. In MATLAB, it behaves like
sum(X,2) provided size(X,2) is not 1. In MATLAB, when size(X,2) is 1,
sum(X) behaves like sum(X,3) . Consequently, you get a run-time error if an
automatically selected working dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as
a constant value.

8-48

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Array-to-vector restriction
The function issues an error when a variable-size array that is not a
variable-length vector assumes the shape of a vector at run time. To avoid
the issue, specify the input explicitly as a variable-length vector instead of
a variable-size array.

Array-to-scalar restriction
The function issues an error if a variable-size array assumes a scalar value at
run time. To avoid this issue, specify all scalars as fixed size.

Toolbox Functions with Variable Sizing Restrictions

Function Restrictions with Variable-Size Data

all
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

any
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun
• Dimensions expand only where one input array
or the other has a fixed length of 1.

cat
• Dimension argument must be a constant.

• An error occurs if variable-size inputs are
empty at run time.

8-49

8 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

conv
• See “Variable-length vector restriction” on page
8-48.

• Input vectors must have the same orientation,
either both row vectors or both column vectors.

cov
• For cov(X), see“Array-to-vector restriction” on
page 8-49.

cross
• Variable-size array inputs that become vectors
at run time must have the same orientation.

deconv
• For both arguments, see“Variable-length vector
restriction” on page 8-48.

detrend
• For first argument for row vectors only, see
“Array-to-vector restriction” on page 8-49 .

diag
• See “Array-to-vector restriction” on page 8-49 .

diff
• See “Automatic dimension restriction” on page
8-48.

• Length of the working dimension must be
greater than the difference order input when
the input is variable sized. For example, if the
input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1)
generates a run-time error.

fft
• See “Automatic dimension restriction” on page
8-48.

8-50

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

filter
• For first and second arguments, see
“Variable-length vector restriction” on page
8-48.

• See “Automatic dimension restriction” on page
8-48.

hist
• For second argument, see “Variable-length
vector restriction” on page 8-48.

• For second input argument, see“Array-to-scalar
restriction” on page 8-49.

histc
• See “Automatic dimension restriction” on page
8-48.

ifft
• See “Automatic dimension restriction” on page
8-48.

ind2sub
• First input (the size vector input) must be fixed
size.

interp1
• For the Y input and xi input, see“Array-to-vector
restriction” on page 8-49.

• Y input can become a column vector dynamically.

• A run-time error occurs if Y input is not a
variable-length vector and becomes a row vector
at run time.

ipermute
• Order input must be fixed size.

issorted
• For optional rows input, see “Variable-length
vector restriction” on page 8-48.

8-51

8 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

magic
• Argument must be a constant.

• Output can be fixed-size matrices only.

max
• See “Automatic dimension restriction” on page
8-48.

mean
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

median
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

min
• See “Automatic dimension restriction” on page
8-48.

mode
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

8-52

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

mtimes
• When an input is variable sized, MATLAB
determines whether to generate code for a
general matrix*matrix multiplication or a
scalar*matrix multiplication, based on whether
one of the arguments is a fixed-size scalar. If
neither argument is a fixed-size scalar, the
inner dimensions of the two arguments must
agree even if a variable-size matrix input
happens to be a scalar at run time.

nchoosek
• Inputs must be fixed sized.

• Second input must be a constant for static
allocation. If you enable dynamic allocation,
second input can be a variable.

• You cannot create a variable-size array by
passing in a variable k unless you enable
dynamic allocation.

permute
• Order input must be fixed size.

planerot
• Input must be a fixed-size, two-element column
vector. It cannot be a variable-size array that
takes on the size 2-by-1 at run time.

poly
• See “Variable-length vector restriction” on page
8-48.

polyfit
• For first and second arguments, see
“Variable-length vector restriction” on page
8-48.

8-53

8 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

prod
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

rand
• For an upper-bounded variable N, rand(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, rand([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

randn
• For an upper-bounded variable N, randn(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, randn([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

reshape
• When the input is a variable-size empty array,
the maximum dimension size of the output
array (also empty) cannot be larger than that
of the input.

roots
• See “Variable-length vector restriction” on page
8-48.

8-54

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

shiftdim
• If you do not supply the second argument, the
number of shifts is determined at compilation
time by the upper bounds of the dimension
sizes. Consequently, at run time the number of
shifts is always constant.

• An error occurs if the dimension that is shifted
to the first dimension has length 1 at run
time. To avoid the error, supply the number of
shifts as the second input argument (must be a
constant).

• First input argument must always have the
same number of dimensions when you supply a
positive number of shifts.

std
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

sub2ind
• First input (the size vector input) must be fixed
size.

sum
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

trapz
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

8-55

8 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

typecast
• See “Variable-length vector restriction” on page
8-48 on first argument.

var
• See “Automatic dimension restriction” on page
8-48.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

8-56

9

Code Generation for
Function Handles

• “How Working with Function Handles is Different for Code Generation”
on page 9-2

• “Example: Defining and Passing Function Handles for Code Generation”
on page 9-3

• “Limitations with Function Handles for Code Generation” on page 9-6

9 Code Generation for Function Handles

How Working with Function Handles is Different for Code
Generation

You can use function handles to invoke functions indirectly and parameterize
operations that you repeat frequently (see “Function Handles” in the
MATLAB Programming Fundamentals documentation). You can perform the
following operations with function handles:

• Define handles that reference user-defined functions and built-in functions
supported for code generation (see Chapter 2, “Functions Supported for
Code Generation”)

Note You cannot define handles that reference extrinsic MATLAB
functions (see “Calling MATLAB Functions” on page 11-11).

• Define function handles as scalar values

• Pass function handles as arguments to other functions (excluding extrinsic
functions)

To generate efficient standalone code for enumerated data, you are restricted
to using a subset of the operations you can perform with function handles
in MATLAB, as described in “Limitations with Function Handles for Code
Generation” on page 9-6

9-2

Example: Defining and Passing Function Handles for Code Generation

Example: Defining and Passing Function Handles for Code
Generation

The following code example shows how to define and call function handles for
code generation. You can copy the example to a MATLAB Function block
in Simulink or MATLAB function in Stateflow. To convert this function to
a MEX function using codegen, uncomment the two calls to the assert
function, highlighted below:

function addval(m)
%#codegen

% Define class and size of primary input m
% Uncomment next two lines to build MEX function with codegen
% assert(isa(m, double));
% assert(all (size(m) == [3 3]));

% Define MATLAB function disp to be extrinsic
coder.extrinsic('disp');

disp(m);

% Pass function handle to addone
% to add one to each element of m
m = map(@addone, m);
disp(m);

% Pass function handle to addtwo
% to add two to each element of m
m = map(@addtwo, m);
disp(m);

function y = map(f,m)
y = m;
for i = 1:numel(y)

y(i) = f(y(i));
end

function y = addone(u)

9-3

9 Code Generation for Function Handles

y = u + 1;

function y = addtwo(u)
y = u + 2;

This code passes function handles @addone and @addtwo to the function map
which increments each element of the matrix m by the amount prescribed
by the referenced function. Note that map stores the function handle in the
input variable f and then uses f to invoke the function — in this case addone
first and then addtwo.

If you have MATLAB Coder, you can use the function codegen to convert the
function addval to a MEX executable that you can run in MATLAB. Follow
these steps:

1 At the MATLAB command prompt, issue this command:

codegen addval

2 Define and initialize a 3-by-3 matrix by typing a command like this at
the MATLAB prompt:

m = zeros(3)

3 Execute the function by typing this command:

addval(m)

You should see the following result:

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

3 3 3
3 3 3
3 3 3

9-4

Example: Defining and Passing Function Handles for Code Generation

For more information, see “Tutorial: Generating MEX Functions from
MATLAB Code at the Command Line” in the MATLAB Coder documentation.

9-5

9 Code Generation for Function Handles

Limitations with Function Handles for Code Generation
Function handles must be scalar values.

You cannot store function handles in matrices or structures.

You cannot use the same bound variable to reference different
function handles.

After you bind a variable to a specific function, you cannot use the same
variable to reference two different function handles, as in this example

%Incorrect code
...
x = @plus;
x = @minus;
...

This code produces a compilation error.

You cannot pass function handles to or from extrinsic functions.

You cannot pass function handles to or from feval and other extrinsic
MATLAB functions. For more information, see “Declaring MATLAB
Functions as Extrinsic Functions” on page 11-11

You cannot pass function handles to or from primary functions.

You cannot pass function handles as inputs to or outputs from primary
functions. For example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

coder.extrinsic('plot');

plot(data, fhandle(data));
x = fhandle(data);

9-6

Limitations with Function Handles for Code Generation

In this example, the function plotFcn receives a function handle and its
data as primary inputs. plotFcn attempts to call the function referenced by
the fhandle with the input data and plot the results. However, this code
generates a compilation error, indicating that the function isa does not
recognize 'function_handle' as a class name when called inside a MATLAB
function to specify properties of primary inputs.

You cannot view function handles from the debugger

You cannot display or watch function handles from the debugger. They
appear as empty matrices.

9-7

9 Code Generation for Function Handles

9-8

10

Defining Functions for Code
Generation

• “Specifying Variable Numbers of Arguments” on page 10-2

• “Supported Index Expressions” on page 10-3

• “Using varargin and varargout in for-Loops” on page 10-4

• “Implementing Wrapper Functions with varargin and varargout” on page
10-7

• “Passing Property/Value Pairs with varargin” on page 10-8

• “Rules for Using Variable Length Argument Lists for Code Generation” on
page 10-10

10 Defining Functions for Code Generation

Specifying Variable Numbers of Arguments
You can use varargin and varargout for passing and returning variable
numbers of parameters to MATLAB functions called from a top-level function.

Common applications of varargin and varargout for code generation include:

• Using for-loops to apply operations to a variable number of arguments

• Implementing wrapper functions that accept any number of inputs and
pass them to another function

• Passing variable numbers of property/value pairs as arguments to a
function

Code generation relies on loop unrolling to produce simple and efficient code
for varargin and varargout. This technique permits most common uses of
varargin and varargout, but not all (see “Rules for Using Variable Length
Argument Lists for Code Generation” on page 10-10). This following sections
explain how to code effectively using these constructs.

For more information about using varargin and varargout in MATLAB
functions, see Passing Variable Numbers of Arguments in the MATLAB
Programming Fundamentals documentation.

10-2

Supported Index Expressions

Supported Index Expressions
In MATLAB, varargin and varargout are cell arrays. Generated code does
not support cell arrays, but does allow you to use the most common syntax
— curly braces {} — for indexing into varargin and varargout arrays, as
in this example:

%#codegen
function [x,y,z] = fcn(a,b,c)
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i};
end

You can use the following index expressions. The exp arguments must be
constant expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element
exp

varargin{exp1: exp2} Read the values of elements
exp1 through exp2

varargin
(read only)

varargin{:} Read the values of all
elements

varargout
(read and write)

varargout{exp} Read or write the value of
element exp

Note The use of () is not supported for indexing into varargin and
varargout arrays.

10-3

10 Defining Functions for Code Generation

Using varargin and varargout in for-Loops
You can use varargin and varargout in for-loops to apply operations to
a variable number of arguments. To index into varargin and varargout
arrays in generated code, the value of the loop index variable must be known
at compile time. Therefore, during code generation, the compiler attempts
to automatically unroll these for-loops. Unrolling eliminates the loop logic
by creating a separate copy of the loop body in the generated code for each
iteration. Within each iteration, the loop index variable becomes a constant.
For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

When to Force Loop Unrolling
To automatically unroll for-loops containing varargin and varargout
expressions, the relationship between the loop index expression and the index
variable must be determined at compile time.

In the following example, the function fcn cannot detect a logical relationship
between the index expression j and the index variable i:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:length(varargin)

j = j+1;
varargout{j} = varargin{j};

10-4

Using varargin and varargout in for-Loops

end

As a result, the function does not unroll the loop and generates a compilation
error:

Nonconstant expression or empty matrix.
This expression must be constant because
its value determines the size or class of some expression.

To correct the problem, you can force loop unrolling by wrapping the loop
header in the function coder.unroll, as follows:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = coder.unroll(1:length(varargin))

j = j + 1;
varargout{j} = varargin{j};

end;

For more information, see coder.unroll in the Code Generation from
MATLAB reference documentation.

Example: Using Variable Numbers of Arguments in
a for-Loop
The following example multiplies a variable number of input dimensions in
inches by 2.54 to convert them to centimeters:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

10-5

10 Defining Functions for Code Generation

Key Points About the Example

• varargin and varargout appear in the subfunction inch_2_cm, not in the
top-level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Rules for Using Variable Length Argument Lists
for Code Generation” on page 10-10.

10-6

Implementing Wrapper Functions with varargin and varargout

Implementing Wrapper Functions with varargin and
varargout

You can use varargin and varargout to write wrapper functions that accept
any number of inputs and pass them directly to another function.

Example: Passing Variable Numbers of Arguments
from One Function to Another
The following example passes a variable number of inputs to different
optimization functions, based on a specified input method:

%#codegen
function answer = fcn(method,a,b,c)
answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)
if strcmp(method,'simple')

answer = simple_optimization(varargin{:});
else

answer = complex_optimization(varargin{:});
end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another
function.

• You can mix variable and fixed numbers of arguments.

For more information, see “Rules for Using Variable Length Argument Lists
for Code Generation” on page 10-10.

10-7

10 Defining Functions for Code Generation

Passing Property/Value Pairs with varargin
You can use varargin to pass property/value pairs in functions. However,
for code generation, you must take precautions to avoid type mismatch errors
when evaluating varargin array elements in a for-loop:

If Do This:

You assign varargin array elements
to local variables in the for-loop

Ensure that for all pairs, the size,
type, and complexity are the same
for each property and the same for
each value

Properties or values have different
sizes, types, or complexity

Do not assign varargin array
elements to local variables in a
for-loop; reference the elements
directly

For example, in the following function test1, the sizes of the property strings
and numeric values are not the same in each pair:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

name = varargin{i};
value = varargin{i+1};
switch name

case 'size'
v = set_size(v, value);

case 'rgb'
v = set_color(v, value);

otherwise
end

end
end

10-8

Passing Property/Value Pairs with varargin

...

Generated code determines the size, type, and complexity of a local variable
based on its first assignment. In this example, the first assignments occur
in the first iteration of the for-loop:

• Defines local variable name with size equal to 4

• Defines local variable value with a size of scalar

However, in the second iteration, the size of the property string changes to
3 and the size of the numeric value changes to a vector, resulting in a type
mismatch error. To avoid such errors, reference varargin array values
directly, not through local variables, as highlighted in this code:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

switch varargin{i}
case 'size'

v = set_size(v, varargin{i+1});
case 'rgb'

v = set_color(v, varargin{i+1});
otherwise

end
end

end
...

10-9

10 Defining Functions for Code Generation

Rules for Using Variable Length Argument Lists for Code
Generation

Do not use varargin or varargout in top-level functions

You cannot use varargin or varargout as arguments to top-level functions.
A top-level function is:

• The function called by Simulink in MATLAB Function block or by Stateflow
in a MATLAB function.

• The function that you provide on the command line to codegen

For example, the following code generates compilation errors:

%#codegen
function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

To fix the problem, write a top-level function that specifies a fixed number
of inputs and outputs and then call inch_2_cm as an external function or
subfunction, as in this example:

%#codegen
function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)
[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (),
to index into varargin and varargout arrays. For more information, see
“Supported Index Expressions” on page 10-3.

10-10

Rules for Using Variable Length Argument Lists for Code Generation

Ensure that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that
the value of the expression can be computed at compile time. For examples,
see “Using varargin and varargout in for-Loops” on page 10-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write
to any of the input arguments, copy the values into a local variable.

10-11

10 Defining Functions for Code Generation

10-12

11

Calling Functions for Code
Generation

• “How MATLAB Resolves Function Calls in Generated Code” on page 11-2

• “How MATLAB Resolves File Types on the Path for Code Generation” on
page 11-6

• “Adding the Compilation Directive %#codegen” on page 11-8

• “Calling Subfunctions” on page 11-9

• “Calling Supported Toolbox Functions” on page 11-10

• “Calling MATLAB Functions” on page 11-11

11 Calling Functions for Code Generation

How MATLAB Resolves Function Calls in Generated Code
From a MATLAB function, you can call subfunctions, supported toolbox
functions, and other MATLAB functions. MATLAB resolves function names
for code generation as follows:

11-2

How MATLAB® Resolves Function Calls in Generated Code

��������	
��

�����	
�

�����
��
�������	
�
�����

�����	
�

�

������
�����

����	��	�
�����	
��

�����	
�

�

������
�����

�������	�������

������

�
�������	
�
������	��

��

��

��

���

��	�����
�
��
��

�������	
��

���

���

���

������	�
������

�����

 ����������
�

��

��

��

11-3

11 Calling Functions for Code Generation

Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function
calls for code generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 11-4.

• Attempts to compile all functions unless you explicitly declare them to
be extrinsic

An extrinsic function is a function on the MATLAB path that the compiler
dispatches to MATLAB software for execution because the target language
does not support the function. MATLAB does not generate code for extrinsic
functions. You declare functions to be extrinsic by using the construct
coder.extrinsic, as described in “Declaring MATLAB Functions as
Extrinsic Functions” on page 11-11.

• Resolves file type based on precedence rules described in “How MATLAB
Resolves File Types on the Path for Code Generation” on page 11-6

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code
generation path contains the toolbox functions supported for code
generation.

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this
path.

MATLAB applies the same dispatcher rules when searching each path (see
“Determining Which Function Gets Called” in the MATLAB Programming
Fundamentals documentation).

11-4

How MATLAB® Resolves Function Calls in Generated Code

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a
customized version. A file on the code generation path always shadows a file
of the same name on the MATLAB path.

11-5

11 Calling Functions for Code Generation

How MATLAB Resolves File Types on the Path for Code
Generation

MATLAB uses the following precedence rules for code generation:

11-6

How MATLAB® Resolves File Types on the Path for Code Generation

��!"�	���

���"�	���

#"�	���

�"�	�����
��!"�	��	�����

�	����
�$�

���

��

��

��

���

�"�	���

���

���

�����

��

�������
������

 �������
���
�

�����

11-7

11 Calling Functions for Code Generation

Adding the Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function to indicate that you
intend to generate code for the MATLAB algorithm. Adding this directive
instructs the MATLAB code analyzer to help you diagnose and correct
violations that would result in errors during code generation.

11-8

Calling Subfunctions

Calling Subfunctions
Subfunctions are functions defined in the body of MATLAB function. They
work the same way for code generation as they do when executing your
algorithm in the MATLAB environment.

The following example illustrates how to define and call a subfunction mean:

function [mean, stdev] = stats(vals)
%#codegen

% Calculates a statistical mean and a standard
% deviation for the values in vals.

coder.extrinsic('plot');
len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len;
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

See “Subfunctions” in the MATLAB Programming Fundamentals
documentation for more information.

11-9

11 Calling Functions for Code Generation

Calling Supported Toolbox Functions
You can call toolbox functions directly if they are supported for code
generation. For a list of supported functions, see “Functions Supported for
Code Generation — Alphabetical List” on page 2-3.

11-10

Calling MATLAB® Functions

Calling MATLAB Functions
MATLAB attempts to generate code for all functions unless you explicitly
declare them to be extrinsic (see “How MATLAB Resolves Function Calls in
Generated Code” on page 11-2). Extrinsic functions are not compiled, but
instead executed in MATLAB during simulation (see “How MATLAB Resolves
Extrinsic Functions During Simulation” on page 11-15).

There are two ways to declare a function to be extrinsic:

• Use the coder.extrinsic construct in main functions or subfunctions (see
“Declaring MATLAB Functions as Extrinsic Functions” on page 11-11).

• Call the function indirectly using feval (see “Calling MATLAB Functions
Using feval” on page 11-15).

Declaring MATLAB Functions as Extrinsic Functions
To declare a MATLAB function to be extrinsic, add the coder.extrinsic
construct at the top of the main function or a subfunction:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Example: Declaring Extrinsic Functions
The following code declares the MATLAB patch and axis functions extrinsic
in the subfunction create_plot:

function c = pythagoras(a,b,color) %#codegen
% Calculates the hypotenuse of a right triangle
% and displays the triangle.

c = sqrt(a^2 + b^2);
create_plot(a, b, color);

function create_plot(a, b, color)
%Declare patch and axis as extrinsic

coder.extrinsic(patch , axis);

11-11

11 Calling Functions for Code Generation

x = [0;a;a];
y = [0;0;b];
patch(x, y, color);
axis('equal');

By declaring these functions extrinsic, you instruct the compiler not to
generate code for patch and axis, but instead dispatch them to MATLAB
for execution.

To test the function, follow these steps:

1 Convert pythagoras to a MEX function by executing this command at
the MATLAB prompt:

codegen -args {1, 1, [.3 .3 .3]} pythagoras

2 Run the MEX function by executing this command:

pythagoras(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

11-12

Calling MATLAB® Functions

When to Use the coder.extrinsic Construct
Use the coder.extrinsic construct to:

• Call MATLAB functions that produce no output — such as plot and
patch — for visualizing results during simulation, without generating
unnecessary code (see “How MATLAB Resolves Extrinsic Functions During
Simulation” on page 11-15).

• Make your code self-documenting and easier to debug. You can scan the
source code for coder.extrinsic statements to isolate calls to MATLAB
functions, which can potentially create and propagate mxArrays (see
“Working with mxArrays” on page 11-16).

• Save typing. With one coder.extrinsic statement, you ensure that each
subsequent function call is extrinsic, as long as the call and the statement

11-13

11 Calling Functions for Code Generation

are in the same scope (see “Scope of Extrinsic Function Declarations” on
page 11-14).

• Declare the MATLAB function(s) extrinsic throughout the calling function
scope (see “Scope of Extrinsic Function Declarations” on page 11-14). To
narrow the scope, use feval (see “Calling MATLAB Functions Using feval”
on page 11-15).

Rules for Extrinsic Function Declarations
Observe the following rules when declaring functions extrinsic for code
generation:

• Declare the function extrinsic before you call it.

• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations
The coder.extrinsic construct has function scope. For example, consider
the following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are
called in the main function foo. There are two ways to narrow the scope of
an extrinsic declaration inside the main function:

• Declare the MATLAB function extrinsic in a subfunction, as in this
example:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)

11-14

Calling MATLAB® Functions

coder.extrinsic('min');
y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main
function foo, but the function min is extrinsic only when called inside the
subfunction mymin.

• Call the MATLAB function using feval, as described in “Calling MATLAB
Functions Using feval” on page 11-15.

Calling MATLAB Functions Using feval
The function feval is automatically interpreted as an extrinsic function
during code generation. Therefore, you can use feval to conveniently call
functions that you want to execute in the MATLAB environment, rather than
compiled to generated code.

Consider the following example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated
by MATLAB — not compiled — which has the same effect as declaring the
function min extrinsic for just this one call. By contrast, the function rat is
extrinsic throughout the function foo.

How MATLAB Resolves Extrinsic Functions During
Simulation
MATLAB resolves calls to extrinsic functions — functions that do not support
code generation — as follows:

11-15

11 Calling Functions for Code Generation

During simulation, MATLAB generates code for the call to an extrinsic
function, but does not generate the function’s internal code. Therefore, you
can run the simulation only on platforms where you install MATLAB software.

During code generation, MATLAB attempts to determine whether the
extrinsic function affects the output of the function in which it is called — for
example by returning mxArrays to an output variable (see “Working with
mxArrays” on page 11-16). If there is no effect on output, MATLAB proceeds
with code generation, but excludes the extrinsic function from the generated
code. Otherwise, MATLAB issues a compiler error.

Working with mxArrays
The output of an extrinsic function is an mxArray — also called a MATLAB
array. The only valid operations for mxArrays are:

• Storing mxArrays in variables

• Passing mxArrays to functions and returning them from functions

• Converting mxArrays to known types at run time

To use mxArrays returned by extrinsic functions in other operations, you must
first convert them to known types, as described in “Converting mxArrays to
Known Types” on page 11-17.

11-16

Calling MATLAB® Functions

Converting mxArrays to Known Types
To convert anmxArray to a known type, assign the mxArray to a variable
whose type is defined. At run time, the mxArray is converted to the type of the
variable assigned to it. However, if the data in the mxArray is not consistent
with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat,
which returns two mxArrays representing the numerator N and denominator
D of the rational fraction approximation of pi. Although you can pass these
mxArrays to another MATLAB function — in this case, min — you cannot
assign the mxArray returned by min to the output y.

If you run this function foo in a MATLAB Function block in a Simulink
model, the code generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To correct this problem, define y to be the type and size of the value that you
expect min to return — in this case, a scalar double — as follows:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double
y = min(N,D);

Restrictions on Extrinsic Functions for Code
Generation
The full MATLAB run-time environment is not supported during code
generation. Therefore, the following restrictions apply when calling MATLAB
functions extrinsically:

11-17

11 Calling Functions for Code Generation

• MATLAB functions that inspect the caller or write to the caller’s workspace
do not work during code generation. Such functions include:

- dbstack

- evalin

- assignin

• The MATLAB debugger cannot inspect variables defined in extrinsic
functions.

• Functions in generated code may produce unpredictable results if your
extrinsic function performs any of the following actions at run time:

- Change folders

- Change the MATLAB path

- Delete or add MATLAB files

- Change warning states

- Change MATLAB preferences

- Change Simulink parameters

Limit on Function Arguments
You can call functions with up to 64 inputs and 64 outputs.

11-18

12

Generating Efficient and
Reusable Code

• “Generating Efficient Code” on page 12-2

• “Generating Reusable Code” on page 12-4

12 Generating Efficient and Reusable Code

Generating Efficient Code

In this section...

“Unrolling for-Loops” on page 12-2

“Inlining Functions” on page 12-2

“Eliminating Redundant Copies of Function Inputs” on page 12-2

Unrolling for-Loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of the
loop body in the generated code for each iteration. Within each iteration, the
loop index variable becomes a constant. By unrolling short loops with known
bounds at compile time, MATLAB generates highly optimized code with no
branches.

You can also force loop unrolling for individual functions by wrapping
the loop header in an coder.unroll function. For more information, see
coder.unroll in the Code Generation from MATLAB Function Reference.

Inlining Functions
MATLAB uses internal heuristics to determine whether or not to inline
functions in the generated code. You can use the coder.inline directive to
fine-tune these heuristics for individual functions. See coder.inline in the
Code Generation from MATLAB Function Reference.

Eliminating Redundant Copies of Function Inputs
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by

12-2

Generating Efficient Code

reference in the generated code instead of redundantly copying the input to a
temporary variable. For example, input A above is passed by reference in the
generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(real_T *A, real_T B)
{

*A *= B;
}
...

The reference parameter optimization reduces memory usage and improves
run-time performance, especially when the variable passed by reference is
a large data structure. To achieve these benefits at the call site, call the
function with the same variable as both input and output.

By contrast, suppose you rewrite function foo without using this optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

In this case, MATLAB generates code that passes the inputs by value and
returns the value of the output:

...
/* Function Definitions */
real_T foo2(real_T A, real_T B)
{

return A * B;
}
...

12-3

12 Generating Efficient and Reusable Code

Generating Reusable Code
With MATLAB, you can generate reusable code in the following ways:

• Write reusable functions using standard MATLAB function file names
which you can call from different locations, for example, in a Simulink
model or MATLAB function library.

• Compile external functions on the MATLAB path and integrate them into
generated C code for embedded targets.

See “How MATLAB Resolves Function Calls in Generated Code” on page 11-2.

Common applications include:

• Overriding generated library function with a custom implementation

• Implementing a reusable library on top of standard library functions that
can be used with Simulink

• Swapping between different implementations of the same function

12-4

A

Examples

Use this list to find examples in the documentation.

A Examples

Data Management
Example: Defining a Variable for Multiple Execution Paths on page 4-4
Example: Defining All Fields in a Structure on page 4-5
“Defining Uninitialized Variables” on page 4-9
Variable Reuse in an if Statement on page 4-12

Code Generation for Structures
“Adding Fields in Consistent Order on Each Control Flow Path” on page 6-4
“Using repmat to Define an Array of Structures with Consistent Field
Properties” on page 6-7
“Defining an Array of Structures Using Concatenation” on page 6-8
“Making Structures Persistent” on page 6-9

Code Generation for Enumerated Data
“Simple Example: Defining and Using Enumerated Types for Code
Generation” on page 7-13
“Using the if Statement on Enumerated Data Types” on page 7-18
“Using the switch Statement on Enumerated Data Types” on page 7-19
“Using the while Statement on Enumerated Data Types” on page 7-22

Code Generation for Variable-Size Data
“Tutorial: Generating MEX Code for a MATLAB Function That Expands a
Vector in a Loop” on page 8-9
“Example: Inferring Upper Bounds from Multiple Definitions with
Different Shapes” on page 8-27
“Constraining the Value of a Variable That Specifies Dimensions of
Variable-Size Data” on page 8-34
“Specifying the Upper Bounds for All Instances of a Local Variable” on
page 8-35

A-2

Code Generation for Function Handles

Code Generation for Function Handles
“Example: Defining and Passing Function Handles for Code Generation”
on page 9-3

Using Variable-Length Argument Lists
“Example: Using Variable Numbers of Arguments in a for-Loop” on page
10-5
“Example: Passing Variable Numbers of Arguments from One Function to
Another” on page 10-7

Optimizing Generated Code
“Eliminating Redundant Copies of Function Inputs” on page 12-2

A-3

A Examples

A-4

Index

IndexA
arguments

limit on number for code generation from
MATLAB 11-18

C
C/C++ code generation for supported

functions 2-1
code generation from MATLAB

best practices for working with variables 4-3
calling MATLAB functions 11-11
calling MATLAB functions using feval 11-15
calling subfunctions 11-9
characters 5-6
communications system toolbox System

objects 3-3
compilation directive %#codegen 11-8
computer vision system toolbox System

objects 3-13
converting mxArrays to known types 11-17
declaring MATLAB functions as extrinsic

functions 11-11
defining persistent variables 4-10
defining variables 4-2
defining variables by assignment 4-3
dsp system toolbox System objects 3-8
eliminating redundant copies of function

inputs 12-2
eliminating redundant copies of uninitialized

variables 4-8
function handles 9-1
generating efficient code 12-2
how it resolves function calls 11-2
initializing persistent variables 4-10
inlining functions 12-2
limit on number of function arguments 11-18
pragma 11-8
resolving extrinsic function calls during

simulation 11-15

resolving extrinsic function calls in generated
code 11-16

rules for defining uninitialized variables 4-8
setting properties of indexed variables 4-6
supported toolbox functions 11-10
unrolling for-loops 12-2
using type cast operators in variable

definitions 4-6
variables, complex 5-4
working with mxArrays 11-16

coder.extrinsic 11-11
coder.nullcopy

uninitialized variables 4-8
communications system toolbox System objects

supported for code generation from
MATLAB 3-3

computer vision system toolbox System objects
supported for code generation from

MATLAB 3-13

D
defining uninitialized variables

rules 4-8
defining variables

for C/C++ code generation 4-3
dsp system toolbox System objects

supported for code generation from
MATLAB 3-8

E
eliminating redundant copies of function

inputs 12-2
extrinsic functions 11-11

F
function handles

for code generation from MATLAB 9-1
functions

Index-1

Index

limit on number of arguments for code
generation 11-18

Functions supported for C/C++ code
generation 2-1
alphabetical list 2-3
arithmetic operator functions 2-59
bit-wise operation functions 2-60
casting functions 2-60
Communications System Toolbox

functions 2-61
complex number functions 2-61
Computer Vision System Toolbox

functions 2-62
data type functions 2-63
derivative and integral functions 2-63
discrete math functions 2-63
error handling functions 2-64
exponential functions 2-64
filtering and convolution functions 2-65
Fixed-Point Toolbox functions 2-65
histogram functions 2-74
Image Processing Toolbox functions 2-74
input and output functions 2-75
interpolation and computational geometry

functions 2-75
linear algebra functions 2-76
logical operator functions 2-76
MATLAB Compiler functions 2-77
matrix/array functions 2-77
nonlinear numerical methods 2-81
polynomial functions 2-81
relational operator functions 2-81
rounding and remainder functions 2-82
set functions 2-82
signal processing functions 2-83
Signal Processing Toolbox functions 2-83
special value functions 2-88
specialized math functions 2-88
statistical functions 2-89

string functions 2-89
structure functions 2-90
trigonometric functions 2-90

Functions supported for MEX and C/C++ code
generation
categorized list 2-58

I
indexed variables

setting properties for code generation from
MATLAB 4-6

initialization
persistent variables 4-10

M
MATLAB

features not supported for code
generation 1-11

MATLAB for code generation
variable types 4-16

MATLAB functions
and generating code for mxArrays 11-16

mxArrays
converting to known types 11-17
for code generation from MATLAB 11-16

P
persistent variables

defining for code generation from
MATLAB 4-10

initializing for code generation from
MATLAB 4-10

S
signal processing functions

for C/C++ code generation 2-83

Index-2

Index

T
type cast operators

using in variable definitions 4-6

U
uninitialized variables

eliminating redundant copies in generated
code 4-8

V
variable types supported for code generation

from MATLAB 4-16

variables
eliminating redundant copies in C/C++ code

generated from MATLAB 4-8
Variables

defining by assignment for code generation
from MATLAB 4-3

defining for code generation from
MATLAB 4-2

Index-3

	toc
	About Code Generation from MATLAB Algorithms
	Direct Translation of MATLAB Algorithms to C/C++ Code
	Prerequisites for Code Generation from MATLAB
	Preparing MATLAB Code for C/C++ and MEX Code Generation
	Expected Differences in Behavior After Compiling Your MATLAB Cod
	Why Are There Differences?
	Character Size
	Order of Evaluation in Expressions
	Termination Behavior
	Size of Variable-Size N-D Arrays
	Floating-Point Numerical Results
	When computer hardware uses extended precision registers
	For certain advanced library functions
	For implementation of BLAS library functions
	NaN and Infinity Patterns
	 Code Generation Target

	MATLAB Language Features Supported for Code Generation
	MATLAB Language Features Not Supported for Code Generation
	Related Products that Support Code Generation from MATLAB

	Functions Supported for Code Generation
	About Code Generation for Supported Functions
	Functions Supported for Code Generation — Alphabetical List
	Functions Supported for Code Generation — Categorical List
	 Aerospace Toolbox Functions
	Arithmetic Operator Functions
	Bit-Wise Operation Functions
	Casting Functions
	Communications System Toolbox Functions
	Complex Number Functions
	Computer Vision System Toolbox Functions
	Data Type Functions
	Derivative and Integral Functions
	Discrete Math Functions
	Error Handling Functions
	Exponential Functions
	Filtering and Convolution Functions
	Fixed-Point Toolbox Functions
	Histogram Functions
	Image Processing Toolbox Functions
	Input and Output Functions
	Interpolation and Computational Geometry
	Linear Algebra
	Logical Operator Functions
	MATLAB Compiler Functions
	Matrix and Array Functions
	Nonlinear Numerical Methods
	Polynomial Functions
	Relational Operator Functions
	Rounding and Remainder Functions
	Set Functions
	Signal Processing Functions in MATLAB
	Signal Processing Toolbox Functions
	Special Values
	Specialized Math
	Statistical Functions
	String Functions
	Structure Functions
	Trigonometric Functions

	System Objects Supported for Code Generation
	About Code Generation for System Objects
	Communications System Toolbox System Objects
	DSP System Toolbox System Objects
	Computer Vision System Toolbox System Objects

	Defining MATLAB Variables for C/C++ Code Generation
	Why Define Variables Differently for Code Generation?
	Best Practices for Defining Variables for C/C++ Code Generation
	Define Variables By Assignment Before Using Them
	Example: Defining a Variable for Multiple Execution Paths
	Example: Defining All Fields in a Structure
	Use Caution When Reassigning Variables
	Use Type Cast Operators in Variable Definitions
	Define Matrices Before Assigning Indexed Variables

	When You Can Reassign Variable Properties for C/C++ Code Generat
	Dynamically sized variables
	Variables reused in the code for different purposes
	Eliminating Redundant Copies of Variables in Generated Code
	When Redundant Copies Occur
	How to Eliminate Redundant Copies by Defining Uninitialized Vari
	What happens if you access uninitialized data?
	Defining Uninitialized Variables

	Defining and Initializing Persistent Variables
	Reusing the Same Variable with Different Properties
	When You Can Reuse the Same Variable with Different Properties
	When You Cannot Reuse Variables
	Variable Reuse in an if Statement
	Limitations of Variable Reuse

	Supported Variable Types

	Defining Data for Code Generation
	How Working with Data is Different for Code Generation
	Code Generation for Complex Data
	Restrictions When Defining Complex Variables
	Expressions Containing Complex Operands Yield Complex Results

	Code Generation for Characters

	Code Generation for MATLAB Structures
	How Working with Structures is Different for Code Generation
	Structure Operations Allowed for Code Generation
	Defining Scalar Structures for Code Generation
	Restrictions When Using struct
	Restrictions When Defining Scalar Structures by Assignment
	Adding Fields in Consistent Order on Each Control Flow Path
	Restriction on Adding New Fields After First Use

	Defining Arrays of Structures for Code Generation
	Ensuring Consistency of Fields
	Using repmat to Define an Array of Structures with Consistent Fi
	Defining an Array of Structures Using Concatenation

	Making Structures Persistent
	Indexing Substructures and Fields
	Reference substructure field values individually using dot notat
	Reference field values individually in structure arrays
	Do not reference fields dynamically
	Assigning Values to Structures and Fields
	Field properties must be consistent across structure-to-structur
	Do not use field values as constants
	Do not assign mxArrays to structures

	Code Generation for Enumerated Data
	How Working with Enumerated Data is Different for Code Generatio
	See Also

	Enumerated Types Supported for Code Generation
	Enumerated Type Based on int32
	Syntax
	Example
	How to Use

	Enumerated Type Based on Simulink.IntEnumType
	Syntax
	Example
	How to Use

	When to Use Enumerated Data for Code Generation
	Workflows for Using Enumerated Data for Code Generation
	Workflow for Generating Code for Enumerated Data from MATLAB Alg
	Workflow for Generating Code for Enumerated Data from MATLAB Fun

	How to Define Enumerated Data for Code Generation
	Naming Enumerated Types for Code Generation

	How to Instantiate Enumerated Types for Code Generation
	How to Generate Code for Enumerated Data
	See Also

	Simple Example: Defining and Using Enumerated Types for Code Gen
	About the Example
	See Also

	Class Definition: sysMode
	Class Definition: LEDcolor
	Function: displayState

	Operations on Enumerated Data Allowed for Code Generation
	Assignment Operator, =
	Relational Operators, < > <= >= == ~=
	Cast Operation
	Indexing Operation
	Control Flow Statements: if, switch, while

	Using Enumerated Data in Control Flow Statements
	Using the if Statement on Enumerated Data Types
	Class Definition: sysMode
	Class Definition: LEDcolor
	MATLAB Function: displayState
	Build and Test a MEX Function for displayState

	Using the switch Statement on Enumerated Data Types
	Class Definition: VCRState
	Class Definition: VCRButton
	MATLAB Function: VCR
	Build and Test a MEX Function for VCR

	Using the while Statement on Enumerated Data Types
	Class Definition: State
	MATLAB Function: Setup
	Build and Test a MEX Executable for Setup

	Restrictions on Use of Enumerated Data in for-Loops
	Do not use enumerated data as the loop counter variable in for-
	Toolbox Functions That Support Enumerated Types for Code Generat

	Code Generation for Variable-Size Data
	What Is Variable-Size Data?
	How Working with Variable-Size Data is Different for Code Genera
	See Also

	Bounded Versus Unbounded Variable-Size Data
	When to Use Dynamic Allocation for Variable-Size Data
	See Also

	How to Generate Code for MATLAB Functions with Variable-Size Dat
	Tutorial: Generating MEX Code for a MATLAB Function That Expands
	About the MATLAB Function emldemo_uniquetol
	Work Through the Tutorial or Use the Supplied Solution

	Step 1: Add Compilation Directive for Code Generation
	Step 2: Address Issues Detected by the Code Analyzer
	Step 3: Generate MEX Code
	What do these command-line options mean?
	Step 4: Fix the Size Mismatch Error
	Step 5: Fix the Upper Bounds Error
	Specify Upper Bounds for Variable B
	Enable Dynamic Memory Allocation for an Unbounded Variable B
	See Also

	Step 6: Generate C/C++ Code
	See Also

	Enabling and Disabling Support for Variable-Size Data
	Enabled by Default
	Controlling Variable-Size Support for Different Code Generation

	Enabling and Disabling Dynamic Memory Allocation for Variable-Si
	Variable-Size Data in Code Generation Reports
	What Reports Tell You About Size
	How Size Appears in Code Generation Reports
	How to Generate a Code Generation Report

	Defining Variable-Size Data for Code Generation
	When to Define Variable-Size Data Explicitly
	Using a Matrix Constructor with Nonconstant Dimensions
	Inferring Variable Size from Multiple Assignments
	Example: Inferring Upper Bounds from Multiple Definitions with D

	Defining Variable-Size Data Explicitly Using coder.varsize
	Specifying Which Dimensions Vary
	Allowing a Variable to Grow After Defining Fixed Dimensions
	Defining Variable-Size Matrices with Singleton Dimensions
	Defining Variable-Size Structure Fields

	Specifying Upper Bounds for Variable-Size Data
	When to Specify Upper Bounds for Variable-Size Data
	Specifying Upper Bounds on the Command Line for Variable-Size In
	Specifying Unknown Upper Bounds for Variable-Size Inputs
	Specifying Upper Bounds for Local Variable-Size Data
	Constraining the Value of a Variable That Specifies Dimensions o
	Specifying the Upper Bounds for All Instances of a Local Variabl

	C Code Interface for Unbounded Arrays and Structure Fields
	emxArray: Representation of Data with Unknown Upper Bounds
	emxArray Structure Definition
	emxArray Structure Fields

	Utility Functions for Creating emxArray Data Structures

	Troubleshooting Issues with Variable-Size Data
	Diagnosing and Fixing Size Mismatch Errors
	Assigning Variable-Size Matrices to Fixed-Size Matrices
	Empty Matrix Reshaped to Match Variable-Size Specification
	Performing Binary Operations on Fixed and Variable-Size Operands
	Diagnosing and Fixing Errors in Detecting Upper Bounds
	Using Nonconstant Dimensions in a Matrix Constructor

	Limitations with Variable-Size Support for Code Generation
	Limitation on Scalar Expansion
	Workaround

	Incompatibility with MATLAB in Determining Size of Variable-Size
	Workarounds

	Limitation on Vector-Vector Indexing
	Workaround

	Limitations on Matrix Indexing Operations for Code Generation
	Dynamic Memory Allocation Not Supported for MATLAB Function Bloc
	Limitation on Mixing Stack and Heap Allocation

	Restrictions on Variable Sizing in Toolbox Functions Supported f
	Common Restrictions
	Variable-length vector restriction
	Automatic dimension restriction
	Array-to-vector restriction
	Array-to-scalar restriction

	Toolbox Functions with Variable Sizing Restrictions

	Code Generation for Function Handles
	How Working with Function Handles is Different for Code Generati
	Example: Defining and Passing Function Handles for Code Generati
	Limitations with Function Handles for Code Generation
	Function handles must be scalar values.
	You cannot use the same bound variable to reference different fu
	You cannot pass function handles to or from extrinsic functions.
	You cannot pass function handles to or from primary functions.
	You cannot view function handles from the debugger

	Defining Functions for Code Generation
	Specifying Variable Numbers of Arguments
	Supported Index Expressions
	Using varargin and varargout in for-Loops
	When to Force Loop Unrolling
	Example: Using Variable Numbers of Arguments in a for-Loop
	Key Points About the Example

	Implementing Wrapper Functions with varargin and varargout
	Example: Passing Variable Numbers of Arguments from One Function
	Key Points About the Example

	Passing Property/Value Pairs with varargin
	Rules for Using Variable Length Argument Lists for Code Generati
	Do not use varargin or varargout in top-level functions
	Use curly braces {} to index into the argument list
	Ensure that indices can be computed at compile time
	Do not write to varargin

	Calling Functions for Code Generation
	How MATLAB Resolves Function Calls in Generated Code
	Key Points About Resolving Function Calls
	Compile Path Search Order
	When to Use the Code Generation Path

	How MATLAB Resolves File Types on the Path for Code Generation
	Adding the Compilation Directive %#codegen
	Calling Subfunctions
	Calling Supported Toolbox Functions
	Calling MATLAB Functions
	Declaring MATLAB Functions as Extrinsic Functions
	Example: Declaring Extrinsic Functions
	When to Use the coder.extrinsic Construct
	Rules for Extrinsic Function Declarations
	Scope of Extrinsic Function Declarations

	Calling MATLAB Functions Using feval
	How MATLAB Resolves Extrinsic Functions During Simulation
	Working with mxArrays
	Converting mxArrays to Known Types

	Restrictions on Extrinsic Functions for Code Generation
	Limit on Function Arguments

	Generating Efficient and Reusable Code
	Generating Efficient Code
	Unrolling for-Loops
	Inlining Functions
	Eliminating Redundant Copies of Function Inputs

	Generating Reusable Code

	Examples
	Data Management
	Code Generation for Structures
	Code Generation for Enumerated Data
	Code Generation for Variable-Size Data
	Code Generation for Function Handles
	Using Variable-Length Argument Lists
	Optimizing Generated Code

	Index

	tables
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Supported Communications System Toolbox System Objects
	Supported DSP System Toolbox System Objects
	Supported Computer Vision System Toolbox System Objects

